
SANDIA REPORT
SAND85-2347 ● UC-705
Unlimited Release
Reprinted January 1996

I

Sandia Software Guidelines

Volume 4

Configuration Management

SF29CIOCI(8431)

.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Gover-
nmentnor any agency thereof, nor any of their employees, nor any of their
contmct.ors, subcontmctors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pr-
ivately owned rights. Reference herein to any specific commercial product,
proceee, or service by tmde name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govem-
rnent, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly born the best available copy.

Available to DC9Eand DOE contractors from
CMce of Scientific and lbchnical Information
PO BOX 62
&k Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National !lkchnical Information Servica
US Deparhnent of Commerce
5285 Port ~O@ ~d

SpringfMd, VA22161

NTIS price codes
Printed copy A06
Microfiche copy AO1

#’-
Distribution

?.

..

SAND85-2347
Category UC-705

UnIimited Release
Printed June 1992

Seeond Printing January 1996

Sandia Software Guidelines

Volume 4

Configuration Management

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

This volume is one in a series of Sandia Software Guidelines for use in producing qualilty
software within Sandia National Laboratories. This volume is based on the IEEE standard and
guide for software configuration management. The basic concepts and detailed guidance on
implementation of these concepts are discussed for several software project types. Example
planningdocuments for both projects and organizations are included.

—

Foreword

This volume is one in a series of Sandia Sojiware Guidelines for use in producing quality
software within Sandia National Laboratories (SNL). These guidelines, when used in conjunction
with IEEE standards and current software engineering methodologies, will help ensure that soflwarc
developed within SNL is usable, reliable, understandable, maintainable, and portable. When
complete, the series will consist of the following documents:

● Volume 1, Software Quality Planning (SAND85-2344)

Presents an overview of procedures designed to ensure software quality. Includes a
sample software quality assurance plan for a generic Sandia software project.

. Volume 2, Documentation (SAND85-2345)

Presents a description of documents needed for developing, maintaining, and defining
software projects. Includes sample document outlines.

● Volume 3, Standards, Practices, and Conventions (SAND85-2346)

Presents consensus standards and practices for developing and maintaining quality
software at SNL. Includes recommended deliverables for major phases of the soflwarc
life cycle.

● Volume 4, Configuration Management (SAND85-2347)

Presents a discussion of configuration management objectives and approaches
throughout the software life cycle for software projects at SNL.

● Volume 5, Tools, Techniques, and Methodologies (SAND85-2348)

Presents descriptions and a directory of software tools and methodologies available 10
SNL personnel.

Acknowledgment

A consensus document like this volume of the Sandia Sojhvare Guidelines, cannot be produced
without the cooperation and hard work of a great many people throughout the Laboratories. The
sponsoring Software Quality and Reliability Department wishes to thank the members of the
working group who contributed to Volume 4, as well as the members of the balloting group who
reviewed and refined it.

Working Group Members, Volume 4

Brandon Ahrens (2725) Randy Summers (6418)
David Bradley (former Sandian) (6429) Dave Peercy (0326)
Olin Bray (2818) Eric Tomlin, Editor (0326)
Blase Gaude (5012) Sharon Trauth, Co-Edhor (2545)

ii

1

2

3

4

Introduction

Contents

1.1 Intent
1.2 Environment
1.3 Applicability
1.4 Guideline Organization
1.5 How to Use This Volume

Configuration Management Concepts and Activities
2.1 Objectives and Benefits of Configuration Management
2.2 Fundamental Concepts
2.3 Specific Activities
2.3.1 Identification of Configuration Items
2.3.2 Change Control
2.3.3 Status Accounting
2.3.4 Audits and Reviews
2.4 The Software Release Process
2.5 Integrating SCM Activities with the Software Life Cycle

Planning for Configuration Management
3.1 Soft&are Configuration Management Plans
3.1.1 Essential Elements of an SCMP
3.1.2 Types of Plans
3.2 Standards and Guides
3.3 Project Plan vs. Organizational Plan
3.4 Using Procedures Effectively

Making Configuration Management Work For You
4.1 Establishing a Configuration Management Concept and Plan
4.1.1 SCM Alternative Concepts
4.1.2 Plan to Use the Sandia Drawing System
4.1.3 Idcntif y Software Parts and Control Authority
4.1.4 Identify SCM Relationships
4.2 Establishing Change Control Procedures and Authority
4.2.1 Change Control Procedures
4.2.2 Change Control Authority
4.3 Using Baselines and Libraries
4.4 Managing the Release and Concerns After Release
4.5 Managing Configuration Management Records

1
1
2
2
3
4

7
7

10
13
13
13
15
15
16
17

21
21
22
25
28
28
29

35
35
36
41
41
41
41
42
43
46
49

51

...
111

5 Considering Tools
5.1 Goals for Automation of SCM Functions
5.2 Framework for Evaluating SCM Tools
5.3 Software Entities that Tools Must Control
5.4 Pitfalls

Appendix A:

Appendix B:

Appendix C:

Appendix D;

Appendix E:

Appendix F:

References

Glossary and Acronyms

53
53
54
56
58

A-1

B-1

Organizational SCMP Thematic c-1

Sample Project Software Configuration Management Plan: D-1
Small to Medium Weapons Application

Sample Project Software Configuration Management Plan: E-1
Large, Non-Weapons Research Application

Software Configuration Management Plan Template F-1

List of Figures

Figure 1-1. SCM Application Summary
Figure 2-1. Software Life Cycle Process Activities
Figure 2-21 Relationship of Software Life Cycle Process Activities
Figure 2-3. Sample Configuration Item Decomposition
Figure 3-1. SQAP - SCMP Relationship
Figure 3-2. Software Part Identification, Supporting Documents
Figure 3-3. Version Change to Some Components
Figure 3-4. New Version, Backward Compatible
Figure 3-5. New Version - Not Compatible With Previous Versions
Figure 4-1. SCM Concepts and Planning Guidelines
Figure 4-2. Guidelines for Selecting the Appropriate SCM Level
Figure 4-3. SCM Change Control and Authority Guidelines
Figure 4-4. Change Control Procedure
Figure 4-5. SCM Libraries Guidelines
Figure 5-1. Taxonomy of Objects
Figure 5-2. Information Model

5
7
8

10
21
31
32
33
34
35
36
42
44
47
57

59

iv

. 1 Introduction

As much as we may all prefer stability, change is ever present in the world in which we live.
Software is no exception. In fact, software might very well be called “change-ware,” since its
nature is characterized by change. On countless projds we hear statements like, “Hey, that’s great,
but can you make it do...” and “I know what the problem is; I can fix it in no time.” Such seems LO
be the way of life when it comes to software.

But changes in software can easily get out of hand. Here are just a few examples.

●

●

●

●

Last minute changes in the requirements are made. Software changes are implemented, but
there is not enough time to update all the documentation.

Testing uncovers a minor problem, and it takes a revision of only one statement to make it
right. The test is rerun to show that the problem is fixed, and the software is delivered.
Later, the customer reports a problem. Investigation reveals that the one-line change affected
another function elsewhere in the software.

Delivery time is fast approaching, but there is one feature that just dots nol work as it should.
The customer agrees to take the software without this feature, on a promise that it will bc
included in a subsequent product revision. The feature is deleted from the software for
shipment. Subsequently, the customer reports a problem. The software designer discovers
during troubleshooting that not ail the code for the deleted feature was acLual!y removed.

A new programmer on a large project decides that a particular data value is not necessary for
the remainder of a module’s calculations. He deletes this part of the calculation, finishes his
module, and verifies that it works properly. Other programmers, however, need this data
value for their modules, and wind up spending three days trying to find out why their
modules do not calculate correct answers.

Certainly many more examples come to mind. Time constraints create an environment in which
mistakes easily happen. But, as in the second and fourth examples, mistakes happen even umlcr lCSS
hectic circumstances. For software to have the elusive characteristic of “quality,” wc cannot afford
to take change for granted. Change will occur, but we must do whatever we can to be sure that the
quality of the software product is not jeopardized.

1.1 Intent

Configuration Management (CM) is a familiar concept to many of those involved in hardware
engineering environments, CM establishes a comprehensive set of activities that are intended to

capture the essence of the design and its definition at any point in time. Configuration Managcmcnl
akso provides a basic framework that facilitates change approval, implementation, and tracking
throughout the life of the product.

This, the fourth volume in the set of Sandia So@are Guidelines, presents concepts in Software
Configuration Management (SCM), as derived tlom the familim hardware world, and illustrate how
they are applied to software projects in general. The volume discusses these concepts in the context
of their importance to software and software quality, as well as to integrated hardware-software
systems. Volume 4 centers on SCM techniques that can be applied to the kinds of software projects
found at Sandia NationaI Laboratories.

This volume is not intended to provide the answers to aI1 questions in the area of configuration
management and its application to software. Rather, it is intended to stimulate all individuals
concerned with software — developers, managers, and quality personnel — to think about the
problems and issues involved in the effective management of software change.

Based on the consensus standards developed and published by the Institute of Electrical and
Electronics Engineers (IEEE), this volume provides information that should supplement the content
of the related IEEE standards [IEE90-b]*, [IEE87], and assist the user in the application of these
nationally recognized standards to their particular projects.

1.2 Environment

A quick scan of the organizations listed in the Sandia Directory reveals the diversity of functions
performed throughout the Laboratories. The environment found throughout Sandia is seen as one of
innovation and change. Whether research or production-oriented design and development, Sandia
projects are forging new frontiers in the state-of-the-art. Change and iteration are day-to-day parts
of doing business.

The principles and techniques necessary to transform software development from a “creative art”
to a “structured science” are also in a state of rapid evolution. A cursory review of the professional
community nationwide indicates an increase in the attention and concern being given to the
software engineering field. Countless seminars and cki.sses are availabIe, as well as new texM,
methodologies, techniques, and tools.

The software engineering environment at Sandia is changing with that of the national arena.
Engineering Procedures (EI%) are periodically revised; new areas of concern are being identified,
This document addresses the fundamental principles and concepts that should remain applicable
throughout any upcoming advances.

1.3 Applicability

The material presented in this volume is intended to be applicable to the variety of software
projects at Sandia, although specific mention of every kind of appliczttion is not attempled.

Most projects at Sandia can be regarded as either “weapon” or “non-weapon” activities, the
former encompassing all projects undertaken in support of the design and development of nuclear

* Referettees for additional infomtation are marked tbrrmgbout this volume by brackets in this way: tXYZ89] (KYZ89-X] for

different refen=axes of tie same author and year) end [SSGvn] for Sandia Sojtw&e Guidskss.

weapon systems. Thus, discussions of SCM techniques are divided, when necessary, into these two
basic categories — war reserve (WR) and non-war reserve (non-WR) — applications, respectively.

Where differences in approaches do exist, the material is fust presented in general,
. philosophical, and conceptual terms. This information is followed by examples for both War

Reserve and non-War Reserve projects to illustrate how SCM might be applied in each
environment.

This document is a set of guidelines, not directives. Enforcement of an application of these
guidelines should be established at the project level (or alternatively, at the department or
directorate level), with complete management support. Each project leader should consciously
decide how to adopt these guidelines and implement them for the particular project. Additional
references are given to provide the technical detail necessary to assist in this determination. Once an
understanding of the specific activities necessary for the project is reached, Software Configuration
Management procedures should be documented and rigorously folIowed.

This guide is designed to be used with the other volumes of the Sandia Software Guidelines,
references [SSGV1], [SSGV3], and [SSGV5]. These volumes provide details on prefemed soflwarc
quality engineering practices at Sandia National Laboratories. The reader is also encouraged 10
consult the IEEE software engineering standards and guides for further information. The IEEE
standards are available through the Sandia Design Information Center, the Sandia Technical
Library, or from the IEEE Computer Society. The IEEE also provides a single, bound edition of
current software engineering standards [IEE9 1].

1.4 Guideline Organization

Volume 4 is divided into five chapters and six appendices to help clarify SCM principles. This
first chapter provides general information.

Chapter 2 is a short tutorial on SCM. It presents the objectives and bcnetls of SCM and
establishes the foundation for the remainder of Volume 4, providing information about the specific
functions involved in applying configuration management principles to software. This chapler
discusses selection and identification of software components that will be controlled. Also covered
is the controlling of changes made to the selected software components. It outlines the imporkmcc
of tracking the status of these components, the changes made to them, and the interrchttionships
among them throughout the life cycle. Chapter 2 also covers the review and audit process for both
(1) the final software product — to be that sure everything is internally consistent, up to date, and
ready for rekase, and (2) the SCM process itself — to be sure that it is both implemented and
effective. Finally, this chapter discusses how SCM integrates into the software life cycle.

Chapter 3 covers the necessary, but often neglected, subject of planning. It presents two
approaches to planning SCM: planning at the organizational and project levels. Techniques for
simplifying the planning process, such as standards, guides, and procedures, are discussed, along
with some pointers that can help the reader prepare a more effective approach to SCM.

Chapter 4 provides additional detail by presenting several plan concepts and some specific
techniques that can help implement of an effective SCM program. It discusses the use of libraries

for the controlled retention of software components. It also instructs the reader about how Software
Configuration Control Boards (SCCBS) can be utilized to approve and govern the implementation of
changes, and to assure all concerned are properly notified of a pending change. This chapter
discusses how approval levels for proposed changes can vary according to the stage of project
completion or the severity of the impact of the change. Finally, the chapter alerts the reader to ..
some issues that should be addressed both during development and after release of the software to
assure that an effective SCM system is established.

. ..

Chapter 5 discusses the use of tools to support the SCM process. It begins by addressing the
goals of automating a software configuration management system, followed by a framework for
evaluating tools. A detailed structure of what an automated system should be able to control is
presented. The chapter concludes with a discussion of concerns that cannot be resolved today with
automation, and which can be addressed only by thorough planning.

Finally, six appendices are included for reference and to provide examples of Software
Configuration Management Plans (SCMPS). Appendix A contains references, and Appendix B
contains the glossary and acronyms.

Appendix C is a thematic for an organizational SCMP. Appendix D is a sample plan for an
embedded weapons application. Appendix E is a sample configuration management plan and
procedures for a large research application. Finally, Appendix F is a template for a configuration
management plan. The template is designed to be adaptable to weapon as well as non-weapon
application, and reimbursable projects. This template is available from the Software Quatity and
Reliability Engineering Department on disk (Word for Windows and ASCII) and on-line via the
Sandia Vax System.

1.5 How to Use This Volume

Figure 1-1 is a guide to the reader for locating information concerning (1) the main activities of
software configuration management and (2) the level of planning recommended for a software
development project or an organization’s software development activities. The reader should keep
in mind that Section 2 is for the developer or manager who is m familiar with software
configuration management. Section 3 is for the reader who is I@ familiar with SCM planning.
Section 4 recommends specific levels of configuration management and control for software
development and support. Section 5 is for the reader interested in what an SCM tool should be able
to manage.

4

i 1 I I

L SCM Activities
II

+

Identification:
. Figures 2-3, 3-2,
3-3, 3-4, 3-5,
● Sections 2.3.1,
3.1.1, 3.4

Change Control:
. . Sections 2.3.2,

:.;1, 4.2, 4.3, 4.4,
.

1

.

i

Baselines
● Sections 2.2,
3.1.1, 4.3

4Libraries
c Sections 2.2,
3.1.1, 4.3

i

Status Accounting:
● Section 2.3.3, 4.5

I I

I

i

Reviews & Audits:
. Section 2.3.4

.“

Organizational Plans:
. Section 3.1.2
● Appendix C

Project Plans:
● Sections 3.1.2, 3-3,
4.1, 4.1.1
● Appendices D, E

--l=m
i

Basic
●sec. 4.1.1 I

+
Full
● sec. 4.1.1 I

i

Alternate
●sec. 4.1.1 I

i

Chapter Plan
● Sec 3.1.2 I

Figure 1-1. SCM Application Summary

/’--

5

6

2 Configuration Management Concepts and Activities>

Configuration’ Management (CM) is defined as “the process of identifying and defining the
configuration items in a system, controlling the release and change of these items throughout the
system life cycle, recording and reporting the status of configuration items and change requests, and
verifying the completeness and correcmess of Configuration Items.” [IEE90-a] In essence, CM is
the collection of activities performed during a project to: (1) determine and identify those parts of
the system that need to be controlled, (2) ensure those parts have necessary and accurate definition
and documentation, (3) ensure changes are made to the parts in a controlled manner, and (4) be
able to tell at any point in time the status of a part (e.g., whether a specific part is completed, being
changed, waiting to be tested, or perhaps released to the customer).

2.1 Objectives and Benefits of Configuration Management

The software life cycle process model of Figure 2-1 has a very linear flow, progressing logically
from one phase to the next as the emphasis of activities of one phase decreases and the nexl phase
increases. However, this “waterfall” life cycle model represents an ideal situation which does not
occur in reality. In practice, the software life cycle is a highly iterative process.

I Concept
Exploration 1-

J

Requirements

Design
I

I Test ~

%.ti.n h
[

support J)

(Retirement)

Figure 2-1. Software Life Cycle Process Activities

‘w

As shown in Figure 2-2, changes can, and do, occur at all phases in the development portion of
the life cycle. Design changes may be necessary if requirements change, or when deficiencies are
identified in the design approach to a stable requirement. (Of course, early negotiations with the
user, customer, or “customer base,” if multiple customers exis~ can establish a more stable
foundation at the beginning.) Implementation changes may be encountered for similar reasons.
Testing may uncover defects that require changes in the code and/or the design and requirements.

nUsers/
Customers

B

Preliminary
integration

-b 6- Test
Integration

Design
L Planning

- Testing
J 1 L /

t +
A

Detailed
Design ‘--(lLl-- “:~ing ‘ -

Figure 2-2. Relationship of Software Life Cycle Process Activities

While the development of a new software product is certainly a fluid process, so is the
modification and support of a product which has already been released. Changes must bc made to
the right issue of the code, testing must verify performance of the change and the intcgrit y of the
remaining software, and all associated documentation must be made consistent with the final code.
In essence, the support process undergoes a fluid development cycle of its own which parallels that
of the original design process.

When change is such a part of the creation of the product, it is not hard to imagine that keeping
track of the following issues can easily become a nightmare.

Who has which version of a particular part of the software?

Has a particular change been verified or tested?

Which test results match which versions of the test plan and the code?

.

.“

.

. What actions remain to be completed or which pieces of the software need to be finished for
the project to be completed?

. Which changes will be included in the next version of the product and which wil[be deferred
a for later?

The Basic Reason for SCM

The basic reason for implementing a configuration management system encompassing all
software products is to keep the constantly changing and iterative software components and lhc
associated documentation in a non-degrading state throughout its life cycle. This is a challenge that
must be met in order to develop and maintain quality software. The quality of the software is
fundamental to the level of quality of the complete system.

SCM as a Management Tool

A principal benefit of software configuration management is the ability to give an instantaneous
view of the most current state of dynamically changing software to management as WC]]as to
developers. This means configuration management of the software life cycle should allow decision
makers, at anytime during the iterative process of developmen~ to have an instantaneous picture of
a software project from which to base decisions. As well as having system status available to
management at all times, the status of any module during development can be determined. This
allows the progress of all modules to be tracked independently of the others. Armed wilh this
knowledge, management and developers alike are able to make better decisions about the fuwrc of
that software project and more realistic resource forecasts for the development and support effort.

Concurrent Development of Code Modules

A software configuration management system allows for, and helps track, concurrcm
development of the different modules or components which make up the overall systcm. It can also
prevent two or more people from making changes to the same module at the s~mc time. This
becomes more important as the size of the project increases (and the number of componcnls,
interfaces and interactions increase, or the size of the development team increases). This concurrent
development process and simultaneous change protection allows for the overall progress to bc
faster. Perhaps more importantly, the overall development remains continuous because the SCM
system can provide visibility of the entire software system to all developers. Even for small
projects, the configuration management system plays an important role by keeping all the
concurrently developing code and its associated documentation organized. This saves the project
time in the end because configuration management has forced each phase of the software systcm
development to be organized and executed in a documented, prescribed manner.

Code Reusability

If software engineering techniques and configuration management are rigorously adhered to,
they provide a means of developing a library of reusable code. In such an environment, each
module of code would have its purpose, function, and interface meticulously defined,

\L:-

unambiguously documented, and thoroughly tested. This would allow other developers the
opportunity to reuse one of the previously implemented modules with little or no modification.

2.2 Fundamental Concepts

Principal Terms ‘

e

0

●

e

Configuration Item - Reference Figure 2-3. A software Configuration Item (CI) is a collection of
software entities (or components) treated as single element for the purpose of configuration
management. Configuration Items can vary in size, complexity, and type. A CI may also be
called a Computer Software Configuration Item (CSCI), Computer Program Configuration Item
(CPCI), or (software) system segment. CI or CSCI is used in this guide. In a small to medium
project, the entire collection of software requirements, design description, code, and tests may be
associated together under one CI.

Computer Software Component - Reference Figure 2-3. A Computer Software Component
(CSC) is a distinct part of a software Configuration Item. CSCS may also be furlher
decomposed into subordinate components or individual units. If a large analysis program is
called out as a CI, some of the CSCS could be entities such as a requirements document or
functional groupings of software modules. A CSC may be called a Computer Program
Component (CPC). CSC, or just software component is the term used in this guide.

~

Csc Csc
(Development) (Operation & Support)

I I
I I I 1 I 1

Csc Csc Csc Csc
Unit Unit

(Requirements) (Design) (Code) (Test)
(User’s Guide) (Support Plan)

rL-Ll-n
Units Units

(Modules)

Figure 2-3. Sample Configuration Item Decomposition

Version - A version is a software CI or CSC with a defined set of capabilities. A new version is
a variation of the previous version, in that it has a change in its functionality or performance
characteristics. An example of this is a change to the software to generate a different output.

Release - A release is a copy of the software CI or CSC that is turned over to the customer or
user. It is a promotion of that CI or CSC outside of the development environment.

● Revision - A revision is a formal change to a software CI or CSC that does not alter its
documented functional or performance capabilities. An example of this is when code is changed
to correct a fault.

. Baseline - A baseline is the documented identification of a software product CI — its code and
all its related documentation (e.g., CSCS) at some specific point in time. It is the basis for all
SCM activities. When a baseline is released, it is usually called a new version. CSCS may be
baselined at varying intervals in the development process. Baseline is the designation that
signifies appropriate justification and approval are required to make changes to the baselined
item.

. Personal Library - The Personal Library (also termed the dynamic or programmer’s library) is
used for hokling newly created or modified software entities. This library constitutes a software
developer’s workspace for writing new code or documentation, and may take any form suitable
to the developer’s needs, but should have a degree of order to it that allows the status of its
entities to be determined easily. Each software developer may have a Personal Library from
which project entities can be linked and/or copied. Or, each small team may have a Personal
Library assigned to the team with lower level personal libraries assigned to each individual,
especially in a Local Area Network (LAN) or mainframe environment. Access to the Personal
Library is controlled by, and usually limited to, the software developer.

. Project Library - The project Library (also termed the controlled or “master” library) is a library
used for managing the current internal developmental baselines and for controlling changes
made to them. This library represents the latest internally-approved version of the sof~warc
product being developed. Changes to software entities in the Project Library should have gone
through formal approval procedures established in a configuration management plan. Code in
this library should have been tested sufficiently to assure that it is ready for integration. Copies
may be freely made for use by the software developers and others, but changes must be strict!y
controlled and documented in order to ascertain at any given point its exact configuration. Even
for simple projects in which there is only one code developer, there still should be functional
separation between the Personal Library and the Project Library.

. Release Library - The Release Library (also termed the static or “software repository” library) is
a library used to archive the various baselines (versions) released for general USC.This library is
never changed (except to add a new version), since it must be able to duplicate results from
software that has been released for operational use by other organizations. Access should bc
limited to “read only” for the purpose of mtilng copies. The Sandia Drawing System provides a
Release Library capability required for WR projects and is useful for most other projects
involving formal software deliverables.

. Promotion - A promotion is an action taken with a software component to incrcasc the Icvcl of
authority needed to approve changes to it. For example, a top-level Software Design Description
(SDD) is promoted or moved into the Project Library where alI developers can view, but not
modify it without proper authority. This allows the developers to work on issues that may
concern detailed designs and implementation.

11

Librarian - A person designated to exercise physical control over one or more configuration
management library.

Configuration Control Board (CCB) - A Configuration Control Board is a group of people
responsible for evaluating and approving or disapproving proposed changes to configuration
items, and for ensuring implementation of approved changes. A CCB is sometimes referred to
as a Change Control Board. CCBS may be responsible for the system as a whole, the hardware
alone, or the software alone. If the board is only concetned with software it is usually called a
Software Configuration Control Board (SCCB).

Software Cordiatration Control Board (SCCB) - A Software Configuration Control Board is a
group of individuals who oversee the” softw&e change process, with ultimate authority for
approving a change and promoting a software entity from one library to another. The individuals
may be from the project, related organizations and management levels, the customer, or some
combination. During the development process, the SCCB controls promotions into the Project
Library from the Personal Library and changes to the products in the Project Library. During
the support phase, the project CCB and the SCCB provide the authority to make changes to
products already promoted to the Release Library, and to promote software products from Lhc
Project Library to the Release Library. An SCCB may also be referred to as a Soflware Change
Control Board.

Relationships between Libraries

During the development of the software and its associated documentation, work products can bc
kept in the designer’s or programmer’s personal workspace, referred to as part of his or her Personal
Library. Note that more than one person may be working out of this Personal Library in some
instances. As the work progresses, copies can be passed to other interested parties for crilicism,
feedback, or general information. When the component seems to have reached a stable point during
development, it is approved and formally placed in, or promo[ed to, the Project Library as part of a
baselined* CSCI. (At Sandia, depending upon the initial structure of the configuration management
systcm that was decided on, this software component could be placed into the Drawing Systcm even
though it has only been promoted to the Project Library.) All project members have access to this
library but cannot arbitrarily change the component. Additional changes may be made to this
baseline. After approval of any additional changes, it may then be promoted into the Rclcasc
Library as a new release (and, different suffix, denoting a new version, if different capabilities have
been incorporated). From this Release Library a revision, or a new version, can bc transferred to the
customer or user.

* Baselines represent different hierarchical stages in the development of eaeh software enLity. For example, in the process of

building a computer program, program units (e.g., procedures or modules) are developed. Each unit may be referred to as part

of a code component baseline and each should be assigned a unique and documented identifier. During the dcvelopmcmt

process, the component baseline becomes more and more complex as individual unila are integrated with one another Unlil

eventually the baseline cotilguration represents the final software producl. An important part of this process and a kcy aspect

of configuration management plans is the promotion of bsselines from one stage of development to the next or from one
activity to dte next (e.g., from development to Lestirrg). The requirements for promotion and the authority responsible for

promotion should be stated in the configuration management plan.

.

12

.-”-%

2.3
*

2.3.1

Specific Activities

Identification of Configuration Items

The fwst step, in the configuration management process is the identification of the items to bc
managed and the specification of the management authority responsible for each item. This is a
critical step in the process since the identification scheme is empIoyed throughout the life cycle of
the software product.

Examples of some of the software components which may be included in the configuration
management identification include: design and requirements specifications, source code, executable
code, support software, test plan, test data and results, data bases, software support documentation,
user documentation, and even plans such as the Quality Assurance, Software Development, and
Configuration Management Plans. (Subsets of these software components may be identified
separately (CSC or unit) for inclusion in multiple applications.) The levels of authority assigned
responsibility for each configuration item will vary depending on the complexity of the software
product, the size of the development team, and the management style of the responsible
organization.

An important aspect of configuration identification is the use of a formal naming convention for
each entity. This naming convention, which typically utilizes a combination of mnemonic Iabcls
and version numbers, should be applied to all components of a Configuration Item. In establishing
the naming convention, consideration should be given to system constraints such as name lcnglh or
composition. Consistency in the application of this identification scheme is critical t.o accurate
tracking of the software development process.

2.3.2 Change Control

The software development process involves a natural progression of change and improvement.
Uncontrolled change, however, is often counterproductive and may result, at the very least, in
wasted effort or missed milestones. For this reason, change control is a critically important feature
of configuration management.

The usc of software libraries is important to the successful control of soflwarc change. (See
Relationships between Libraries in Section 2.2.) The two primary Iibrarics for controlling
changes are: personal libraries and project libraries. In the Personal Library, newly crcalcd or

modified versions of software entities are maintained by the responsible developer. Periodical y,
work products may be promoted to the Project Library where access is granted to other dcvclopcrs
or interested parties who require all or part of the promoted entity to be stable enough for their
portion of the development effort. A formal method should be in place to process this promotion
activity (e.g., a “software inspection” of the work product).

A mechanism should be established to process change requests (e.g., discrepancies, fiilurc
reports, requests for new features) from a variety of sources throughout the development process and
during operation and support of the system. This mechanism should extend to a definition of a

process to track, evaluate, and implement change requests into a new version and new release of Lhc
software. The following paragraphs highlight important activities in such a process.

13

Approval of change requests and subsequent change implementation to the Project Library
should be handled by a configuration control authority or Software Configuration Control Board
(SCCB). Depending on the size and nature of the software project, the SCCB may consist of a
single Librarian, or there may be more than one SCCB, each with a different functional
responsibility and jointty responsible for common interfaces, if they exis~ The SCCB takes
responsibility for ensuiing that changes are implemented and tested according to standard
procedures and that hardware/software interfaces and interfaces between software modules are not
violated. The SCCB also focuses on overall project management responsibility for ensuring that
design or requirements specifications are not violated and that software changes are implemented
according to cost and schedule constraints. Additionally, the size and structure of SCCBS normally
change over the life cycle of the software.

To simplify the task of the software configuration control board, formal procedures for an initial
analysis of the change should be established to aid the board in prioritizing the change. Review and
testing requirements for prospective changes should also be established. Results from reviewing
and testing the change should then be submitted to the SCCB to assist in evaluating the change.

Formal procedures should be established for promotion of a baseline into the Release Library
and for subsequent access to the baseline by the project staff or end users. These procedures should
specify the format for baseline submission and the documentation that must accompany the
submission. Once a baseline configuration is submitted to the Release Library, changes to the
baseline should be strictly controlled.

The Release Library serves as a repository for each baseline, and altows an historical record to
be kept of the baseline development and all associated documentation. This library also provides a
central location for the receipt and processing of formal requests for change to a release and the
subsequent tracking of the status of changes.

Only SCCB-approved changes to baselines residing in the Release Library should be allowed.
Documentation that should be submitted with the approved change include: the associated change
requests, updated design documents, reports on the review and testing of the change, information on
implementation of the change, and identification of any supporting software that may bc required
for implementation.

At every library level, implementation of a change into that library produces a new baseline wilh
a new and unique identifier. Also, at this time the software librarian should produce backup files

and update system build procedures if necessary.

\._/

Control of changes to support other third-party software presents a special challenge to the
configuration management plan. Such software entities are usually maintained at a different site
from the primary software product and are usually not subject 10 the same configuration
management plan. Still, controls should be in place to ensure the continued availability of all
required support software including compilers, operating system, etc. It may be desirable, therefore,
to retain support software along with the primary software product.

#
u“

14

2.3.3 Status Accounting

The formal process of tracking software entities through the steps in their evolution is referred to
as status accounting or configuration status accounting (CSA). Status accounting is an important,
part of software project management since it provides the project manager with the data necessary
to gauge and report project progress.

Status accounting reports are most conveniently filed at logical transition points in the
development process. For example, when a baseline configuration is advanced from the design
emphasis to an implementation (coding) emphasis, a record of this should be filed in the
configuration records. Similarly, when a newly developed or modified module has been approved
for system testing and integration, this transition in status should be recorded.

Status accounting encompasses more than just a few reports. The purpose of status accounting is
to have the ability at any point in the development process, to provide the current content of a given
software CI or CSC. If the entity is a software design description, a status accounting mechanism
should allow developers to easily pull together any text files, graphic files, and data files that may
comprise the document. Likewise, change requests to software products should be trackable and the
status of these requests should be readily producible in an organized manner.

2.3.4 Audits and Reviews

Audits and reviews are performed to verify that the software product matches the capabilities
defined in the specifications or other contractual documentation and that the performance of the
product fulfills the requirements of the user or customer.

There are two types of audits which should be performed prior to release of a product baseline or
a revision of an existing baseline. A physical configuration audit should be performed to dctcrminc
whether all software items which should be part of the product baseline arc present in the version
specified in the current status report. A functional configuration audit should also bc conduclcd to
ensure that the software product satisfies the functions defined in the specifications. An important
aspect of these two audits is the assurance that all documentation (change requests, test dam, and
reports, etc.) relevant to the release are current and complete.

In large software projects, audits may be necessary throughout the evolution of a product to
ensure conformance with planned CM actions and to prevent massive problems from being
encountered just prior to release.

A review of the configuration management plan should be periodically performed to assess the
effectiveness of the approach and the extent to which configuration management procedures arc
being followed by project staff. This allows adjustment of procedures to improve the staffs ability
to follow a set of procedures and to aIlow for more effective approaches to be incorporated as lhcy
are developed.

15

2.4 The Software Release Process

The culmination of any software development effort is, of course, the release of the software to
users. The two steps in the release process are the preparation of formal backups and the
verification that all necessary documentation has been completed and matches the code approved
for release.

Backups should be prepared for all files that are needed to rebuild and test the software.
Examples of backups which should be prepared include: all source files, build procedure files, data
files, and executable files. In addition, instructions should be prepared describing reinstallation and
testing of the system from the backups.

The documentation included in the release package should describe to the user the features
included in the release and how to install and use the software code (and its supporting
documentation). The completeness of the documentation will vary depending on the size and
complexity of the release or the criticality of its application. Contractual obligations may also
dictate the type of documentation which must be included in the release.

The package of information associated with the release is sometimes referred to as the Version
Description Document. Some of the information which maybe included in the Version Description
Document include the following

1. A list of the contents of each tape or diskette provided with the release. A brief
des+tion of the contents may also be provided.

2. A functional description of the release to inform the user of any new capabilities not
included in previous releases.

3. A list of previously identified problems which have been corrected in the rclcasc.
Specific problem reports that have been resolved may be referenced here.

4. A discussion of special user considerations such as actions required to usc the new
release (perhaps update pages to a User’s Manual). Limitations or potential problems with
the new release may also be discussed along with any plans to correct these limitations or
problems in future releases. This information is provided to prevent the user from filing
duplicate problem reports or change requests, and to prevent potential disasters to the user’s
applications.

5. An inventory of the source, executable, and data units included in the release. The
inventorj is usually listed in alphabetical order with a designation of the version number and
a creation or modification date.

~i

6. Special instructions, if any, for installing the software on user computing systems.
If this information is provided, a walkthrough should be performed to ensure that the
complete set of instructions required for installation is provided to the user.

16

If the release is a new software product (i.e., not a revision of existing software) or a major
revision of existing software, it may be necessary to provide more extensive documentation than
that included in the Version Description Document. This additional documentation, which is
sometimes referred to as a user’s manual or a code reference manual, may describe in much greater
detail the structure of the code and the individual program units. Finally, in some applications, such
as computer modeling of physical phenomena, the theory underlying the actual source code may be
described in a separate document referred to as a code theory manual.

2.5 Integrating SCM Activities with the Software Life Cycle

When to Start

The time to start considering a software configuration management system is at the beginning of
the project.

The SCM system should have in place a change authority or Software Change Control Board
which can review the impact and technical consequences of any change on the design, code and
testing already undertaken. If changes are approved and incorporated, the Project Librarian tracks
and records these changes to the system to allow for traceability of change process. Any of the
products of the software engineering process may go through several changes, and the software
configuration management system needs to ensure that all those working on the system affCCICd by
the changes are aware of their presence.

If a change to the software turns out to be a mistake, the SCM system should allow an
immediate return to the state of the software and its associated documentation prior to that change.
The flexibility to do this allows many possible avenues to the solution to be experimented with in
detail, which makes it valuable during rapid prototyping design processes. It also lcmis to
significantly reduce the effects and recovery time of large mistakes.

Concept Exploration Phase

During this phase, the specifics about the SCM system should be decided. A Librarian for the
project should be selected at this time. The Librarian has the responsibility to physically cstabiisil,
control, and maintain the collection of software components that constitute one or more baselines of
a software system. Depending on the size of the project, the responsibility of the Librarian can bc
substantial. Standards should be set regarding the different ways of communicating information
about the software projec~ when can it be given, and what can be conveyed to whom? How
formally will each transfer be handled? What is the protocol and how is it rccordcd? Several of
these decisions depend on factors such as: who the customer is, how big the project is, and whether
personnel from more than one organization are working on it. Positions of responsibility shouid bc
assigned to those who wiil be involved in the process.

Requirements Phase

A formal record should be documented (a Software Configuration Management Plan or SCMP)
and maintained which explicitly states all the decisions that were made about configuration

17

‘.--”

management in the Concept Exploration Phase. It should include decisions like: librarian’s
responsibilities; libraries that will be used and their formal definition; numbering of changes.

By the time focus is shifting from requirements definition to design, the configuration
management system should be fmly in place for the rest of the life cycle. This will allow for
changes made in later phases that affect requirements to be tracked and managed effectively. The
net result is a requirements specification that remains current through development and is a viable
asset during operation and support.

Design Phase

The software configuration management system will allow multiple variations (if necessary) of
the design to be tracked and managed effectively. As a design evolves, its history is recorded in the
configuration management system so that a previous state can be returned to, if necessary. The
history will also illustrate why certain design directions were abandoned and others taken. This can
save a great deal of time if the staffing on the project is dynamic, since the “corporate knowledge”
as captured in the SCM system is readily available.

Implementation Phase

Software configuration management throughout the life cycle allows concurrent module
development (as well as multiple variations of the same module to be developed if a goal of the
project is to explore implementation alternatives). Management can assign several programmers to
decrease implementation time because of the ability to develop the modules simultaneously. An
individual programmer will also have the flexibility to try different approaches to the development
of that module without affecting the overall implementation.

Integration and Testing Phases

During integration, the modules that make up a particular version or revision of the system
should be easily identified, even after multiple iterations through the previous phases of the life
cycle. Also, the testing requirements and their associated tests and documentation, which have
probably also undergone various changes during the life cycle, should stil~ be linked correctly 10
each of the prospective modules as well as the version or revision they produce. If a satisfactory
system cannot be built, then the history of each particular module and its associated documentation
can be traced back into its development in an effort to locate and isolate the defect.

Installation and Checkout (Production) Phase

.

:

L

This can be an intensive time frame even though it may be very short. For those projects thal
perform a separate and distinct installation on a user’s platform, the ability to rapidly access all or
portions of the current configuration is essential. If a new problem suddenly arises, as it likely will,
the ability to rapidly identify and isolate the problem area, recommend and approve the change, and
perform testing, relies on the configuration management system being able to respond as in
integration and test, but it must also function in this higher level stress environment.

18

Operation and Support Phase

During the operation and support phase the configuration management system will again have
the tools necessary for a quality product. Product definition documentation that has been generated

. and modified all through the development life cycle can be extracted from the configuration
management system and packaged independently for the user. This process should be very
straightforward if the documentation for the associated version or revision is already written and in
place.

Another asset the configuration management system will offer is change tracking. Even though
it appears the development effort is over, the system will continue to track any changes made during
the support phase. Software support personnel need to know how those changes affect the total
system: software, hardware, and all the associated documentation. Each change should be formal]y
and carefully monitored by the Software Configuration Control Board before its inclusion into the
system.

Probably the most valuable use for the configuration management system’s now formed database
will be to provide all the information new project personnel need to learn and modify the systcm.
The configumtion management system has all the modules and their history linked and available in
one place. This system will allow new personnel to come up to speed on the complete system much
more quickly.

Retirement Phase

The SCM system should be kept active until the software is retired. The final benefit the
software configuration management system will offer is that it should contain any specific
requirements for a safe and secure retirement of the software system. When the system is retired in
full, the configuration management system is used to identify released software that must bc
recalled or replaced by other software. Some records may be archived with the retired soflwarc but
the SCM system (the process) can certainly live on, providing the tools to manage the next project.

19

“’.-”

20

Planning for Configuration Management

Planning for software configuration management (SCM) requires some forethought on the part of
the software developer. Even though many of the activities associated with SCM are routine, their
interaction as they occur throughout the life cycle of the s&ware product requires definition. The
success of a software product depends on (1) clearly stating the actions to be performed to provide
visibility into the evolving configuration, (2) providing the mechanism to implement changes before
and after software components are formally baselined, and (3) assuring that changes have been
incorporated into the appropriate computer software components.

Software configuration management planning is identified as a part of planning for software
quality. As shown in Figure 3-1, the Software Configuration Management Plan (SCMP) addresses
in more depth, several areas identified in the Software Quality Assurance Plan (SQAP) [IEE89].
The sections of the SQAP that are bolded in Figure 3-1 are areas that an SCMP would amplify as
the circumstances warranted.

SQAP

1. Purpose
2. Ref Documents
3. Management
4. Documentation
5. Stds, Practices& Conventions
6. Reviews& Audits
7. Test
8. Prblm Reporting& Corrective Action
9. Tools, TecfL Methods

10. Code Control
t 1. Media Control
12. Supplier Control
13. Reds Collection, Maint & Retention
14. Training
15. Risk Management

SCMP
1. Introduction
2. SCM Management

Organization, Responsibilities,
Applicable Policies & Directives

3. SCM Activities
Identification, Conbol, Status

Accounting, Audits & Reviews,
Interface Control, Strbcentrac!or/
Vendor Control

4. Schedules
5. Resources

Tools, Tech, Methods, Personnel,
Training

6. Plan Maintenance

Figure 3-1. SQAP - SCMP Relationship

3.1 Software Configuration Management Plans

There are six elements, or sections, to an SCMP. Section 1 contains an overview of the plan
itselfi the software, life cycle phases, and activities covered in the plan; definitions; and references.
Section 2 addresses organizational structure and associated responsibilities, and governing policies
and directives. Section 3 describes how SCM requirements will be satisfied through identification
and control of software components, status accounting of software components and changes to those
components, audit and review functions, interface control, and subcontractor and vendor soflwarc.

21

Section 4 describes the implementation schedule of SCM activities while Section 5 addresses
resources (tools, methodologies, personnel, and training.) Section 6 discusses maintenance of the
plan itself.

Planning for configuration management should be done early in the project development process
as discussed in Chapter 2. This does not necessarily mean that a large, formal SCMP must be
developed for every project. The SCMP for a project may be a section in the Software QuaIity
Assurance Plan (SQAP) or the Software Project Management Plan.(SPMP), sometimes referred to as
the Software Development Plan (SDP). This is especially true if there exists an organizational
SCMP describing the way configuration management is normally performed for all software
developed by that organization. The following sections will bring into perspective the level of
planning that may be applied to a software projtxt.

3.1.1 Essential Elements of an SCMP

Referring again to Figure 3-1, every plan usually has a fair amount of “boilerplate” associated
with it and an SCMP is no different. This consists of the purpose, scope, references, and definitions
of Section 1, and to some extent, the organizational structure, responsibilities, and applicable
policies, directives, and procedures of Section 2. While these are not to be discounted, especially
for larger projects, the following discussion is centered on the particular elements that are unique to
configuration management. These are Sections 3 through 5 of the SCMP. Section 6, Plan
Maintenance, is not addressed here (see [IEE90-b] for more information).

What are the components to be developed that require Configuration Management?

One of the fmt things to be done is to identify the software components and CIS that are going to
be developed for a particular project. Part of the identification process is matching a controlling
identification scheme to follow the structure of the software being managed, which in turn may be
dependent on the application. Within the software product itself, there must be an identification
method to relate the various human-readable components and the binary (non-readable)
components. Human-readable components include the Software Requirements Specification (SRS),
SDD, the source code in hard copy, Test Plan, and some automated test scripts. Non-readable
components include object code, executable code, and compilers, linkers, etc. Identification should
also include a module/table naming convention and revision identification scheme.

Where will the “official” version(s) reside?

An “official” version of any software component is one that has been baselined. Baselining* is a
decision process that fixes a component in a particular configuration and must always encompass
inspection or detailed review of that component. Basically there are two forms in which software
components reside: magnetic media and hardcopy (or film). Both of these forms can constitute the
three “Libraries”. These three libraries, Personal, Project, and Release Library (see Section 2.2),
facilitate conceptually, as well as physically, the amount of control being placed on the software
components.

* The process of reviewing (inspecting)a componeni,agreeingonk consents and doasmenting rhat contents, and the
agreement activity. See Principal Terms in Section 22

“.--”

22

Libraries for baselined components are the project and Release Libraries. The Project Library
may be on the same physical system as the Personal Library where the component was located
before inspection or review. However, they should reside on different disks (directories) or tapes.
Additionally, whether the media is hardcopy or magnetic, the Project Library should be under

*
stricter control than the Personal Library because more than one person usually needs access to the
Project Library. “This includes protection against write/delete privileges for all but a designated
configuration manager or Librarian.

. ..
The physical location of the Release Library should be separate from the Personal and Project

Libraries. This is really a more permanent record of the last baseline in the Project Library. On the
same system (disk or tape), they could be confused, even after changes are made in the Project
Library, as work progresses toward the next release. The magnetic media format for all but
executable code should be a project-common editor for code and a common word processing format
or American Standard Code for Information Interchange (ASCII) for documents. (For archive
purposes, ASCII is a safer format since word processing standards change over time.)

When will each software component be baselined?

The timing of when to baseline each component (Software Requirements, Software Design, Test
Plan, Source Code) depends on the development approach for the project as a whole. Development
projects that undergo a series of two or three prototypes will be more convoluted than a project that
adheres to a very linear approach. Rapid prototyping presents additional challenges to ensure
requirements and design information are well documented and baselined before the source code is
finalized. However, regardless of the development approach, each software componenl that
provides the basis for succeeding development work and a succeeding component, should bc
baselined before serious consideration can be given as to the validity of the succeeding component.

The key element in these types of situations is to make every effort to baseline the Soflware
Requirements Specifications at the earliest oppcmtnity. This may not be possible until the initial
prototyping effort is nearly complete. It may be only then that the requirements are well understood.
However, further development should not proceed until these requirements are established
and defined. Only with the establishment of a requirements specification are the software design
document and test plans in a position to be fully developed to match those requirements. Also, the
source code should be basehned prior to integration and system testing. As with the other basclincd
software components, changes are then made within the structure of a configuration management
scheme. This is essential during the final testing phases to ensure that changes do not adversely
impact the validity of previous tests, and if new tests are required, there must be assurances that
changed software is covered by the new tests.

Not mentioned specifically in the above discussion are the planning documents ncccssary for
any software project. Without solid planning, there is little hope for real control over a
development project. If you don’t know where you are going, any road (usually the long one) will
get you there. A Software Project/Development Plan, Software Configuration Management Plan,
Verification and Validation Plan (if required), and organizational plans such as a Software Quality
Plan should really be established and baselined at the earliest phase of any software development
program. Early establishment of the development approach, methods and timing of SCM, and other

/-

23

methods to ensure a high-quality and reliable software product provide the solid framework
necessary to efficiently develop quality software.

How will changes he handled?

Software was meant to be changed. But changes must be accomplished in an orderly and
progressively formal manner. That is the raison d’ttre for the three libraries previously discussed.
Each library provides for both an orderly change process and a more controlled and increasingly
formal structure than the library pxeceding it.

While the software component is still in the developer’s Personal Library, that individual is
solely responsible for making changes. The developer should use self-discipline to ensure changes
are orderly but there is usually no prescribed forrrdity, nor should there be. When a particular
software component has been baselined through an inspection or review process, it should be
promoted to the Project Library. As mentioned before, the gthvsical svstem where this library
resides does not have to be different from the Personal Librafy. The Project Library must be a
different directory, however, preferably on a different disk/tape* . It can be copied into any
Personal Library for further development work. Note that each time the baseline in the Project
Library is updated with one or more changes, the PersonaI Library must reflect that update. Each
iteration of the Personal and project Libraries should be saved for traceabdity. As an alternative to
saving the entire component, the differences (e.g., a “cliff list”) can be saved.

For changes to be incorporated into the Project Library, they must be introduced through the
configuration management process under some change authority. For this level of configuration
management, changes should be at least peer reviewed. (The software inspection is the
recommended review method [SSGV3].) As the number of people working on a project diminish,
this becomes more difficult. One-person projects present the most challenge because there may not
be enough individuals with a working knowledge of the project. This requires dedication on the
part of those individuals to at least “walk through” the change(s) with a co-worker or software-
knowledgeable member of the host-system development team. Each successive component
(Specification, Design, etc.) requires more insight into the details of the software than the preceding
component. Organizations producing software that typically dedicate one person to a project would
serve themselves well to establish a standing group of developers to draw upon for this, review
process.

The highest level of control and the change proces requiring the most formal methods of
configuration management is that of software contained in the Release Library. Once a baselined
component is promoted to the Release Library, changes should only be implemented with a new
release through a change authority such as a Software Configuration Control Board (SCCB). The
size and personnel mix of the “board” will depend on the software being developed. The SCCB
does not approve changes through strength of numbers but through a dedicated, thorough
examination/inspection of the change(s), including their impact. If changes include changed code,
test results using the new code should be included in the examination.

* Pro-t Librariesthemselves shouldbeina central location and in a standardformat for that project rmderthe control of the
Project L]bratian.

24

—

Layered over the physical changes to entities in libraries is a change-tracking mechanism. This
. tracking provides change history information and allows management of the “change request” or

“discrepancy notice” activity. This mechanism is more formally controlled as software components
are pro-mot&i from one libr&y to the next.

s

3.1.2 Types of Plans

A Chapter in Another Document .

As mentioned before, every plan has a fair amount of boilerplate. For most
associated with a projrx% much of this is the same. Overviews, system
responsibilities, interfaces, schedules, and references change very little, if at all. For

of the plans
descriptions,
projects with

one or two people as the responsible developers, the usual practice is not to generate plans but to
begin work on the project itself. This should not be viewed as an excuse not to plan, but the reason
to plan smartly.

Discussing software configuration management as a section within a Software Quality Assurance
Plan, Software QuaIity Plan, or Software Development Plan capitalizes on the structure and
information already present in the “host” plan. However, confining SCM to a chapter within
another document is not always the best answer. To use the chapter approach, the size of the project
should be small and the organizational interfaces need to be small, and be within Sandia. There
should not be a continuous software support responsibility. Of course, the assumption is that the
customer is not requiring a separate Software Configuration Management Plan.

SCM as a chapter is an enumeration of the essentials discussed previously: describing the
scheme to identify and document the functional and physical characteristics of the configuration
item(s) (CIS), describing the methods to control changes during the stages of development, and
describing the methods to track the status of the CIS.

A Stand-alone SCMP

Some software development projects are sufficiently large and complex that two or three
programmatic documents are necessary to adequately describe the activities, interactions, and
infrastructure of the project. The SCM activities may warrant separate treatment in a stand-alone
SCMP. Situations that can lead to this are partitioning of the software among diverse groups (at
different sites); an on-going long term support function associated with the projec~ separate support
programs, system exercisers, etc., must be developed and maintained and/or the customer requests
it.

The areas that should be discussed in a stand-alone SCMP are:

●

●

Introduction/Overview - Brief introduction about the system, purpose and scope of plan,
definitions, references.

Management/SCM Responsibilities - Who the players are and what authority and
responsibility they have.

,.--,

25

‘==

m

●

Activities - Describe how the players will accomplish their responsibilities ofi identifying
CIS, controlling changes, tracking configurations, reviewing (auditing), controlling interfaces
and controlling subcontractor or vendor software.

Schedules - Describe the sequence and dependencies of SCM activities.

Resources - Discuss any tools or methodologies that will be applied as well as the use of
Libraries and other control techniques. Describe the personnel resources needed and any
training requirements to accomplish SCM

Plan Maintenance - Who the owner of the plan is. Describe how changes to the plan itself are
instituted.

Appendix F contains a template for a stand-alone SCMP.

ArI Organizational Software Configuration Management Plan

The organizational SCMP is written in more general terms. The goal here is to provide a
standard for those software configuration management issues that are continually applied to all
projects within a department, center, directorate or even a vice presidency. Even if projects differ
widely, the existence of an organizational SCMP can allow project plans to draw on the
organizational policies and procedures, thereby becoming smaller in size and easier to develop.

Appendix C contains a thematic for an organizational software configuration management plan.

A War Reserve (WR) Specific Plan

An SCMP for WR or WR-related software can be a chapter or stand-alone plan. However, there
are some considerations that must be addressed

For Sandia, the WR or WR-related identification issue is governed by EP401O45. (See
Section 3.4, Using Procedures Effectively.)

For a WR or WR-related system, the controlling identification scheme must include a six-
digit part number with a three-digit suff~ (revision number) so the host hardware system
or next assembly will have a compatible, traceable link to this software component (or
entity) just as to the hardware components. The six-digit part number is a top-level
number or Materials List (ML) number.

For documents, the identification normally is a two-letter prefix (e.g., SR, TK) attached to
the six-digit part number and the component name (e.g., Software Requirements
Specification, Software Test Plan). For file-based components, the identifying scheme is
similac a two-letter prefix (e.g., AT, Al’@ attached to the six-digit part number.

When a WR or WR-related component is promoted to a Project Library it is essential that a
Drawing System six-digit part number be obtained for it. An Issue Oor Checkpoint ML can
be generated with the software components (drawings) identified This action provides two

26

important services. Fus~ it serves as a linking identifier to other software entities
associated with the software produc~ Second, and perhaps more importantly, the software
component(s) can now be formally identified within the Drawing System as a part to a next
assembly or to the system itself.

The Release Library for WR and WR-related software parts is the Sandia Drawing System.
Software components must be in the Drawing System when a software part is formally
released as part of a WR product or into Servise as part of a WR-related product. (Note
that commercial software must be identified but reproduction from the Release Library
may be prohibited due to copyright laws, even if it is needed to support a change of
“Released” software.)

Most WR and WR-related projects are developed in a series of “builds” (e.g., Group 1
(breadboard), . . . Group 3 (advanced development), Pilot Production Item, Qualification
Evaluation (Tool Made Sample, Qualification Sample)). The transition from one build to
another should be heralded by baselining the software components as one or more
configuration items.

Appendix D contains a stand-alone plan for a fictitious project using an embedded WR product.

A Research Project Plan

Like the WR project, a research project plan may also be a chapter plan or a stand-alone
document. There is greater freedom in selecting a controlling identification scheme for non-WR
applications such as a research project. However, these applications are not prohibited from using
the part numbering scheme and the Drawing System like WR and WR-related projects. Since they
are generally not as tightly integrated into the host computer as embedded systems, and if the
Drawing System is not used, any alpha-numeric scheme that the developing organization
consistently applies is acceptable. Part of the scheme must include a project identification sequence
so that document and file based components have a common link. For example, all components of
a weapons effects simulation could have WE1089 as part of its sequence, the “1089” representing
the month and year the project was initiated. Another alternative is to use the acronyms of the title
documents with a control number (part number) based on the project and an alpha-numeric version
suffix. For example, an SRS and SDD could be identified as SRS89050-00 and SDD89050-01 (a
revision of the original reflecting a change in the design to meet the original requirements). Most of
these applications are larger than embedded systems and are usually written in a higher order
language (HOL). They require more attention to naming conventions for modules, subroutines,
segments, and variables mainly because there is more to manage.

Software in this category may also be “mastered” and stored within the Drawing System,
Scientific Computing’s Network Storage Service* (NSS) (requires a drawing system part number),
or within the developing organization’s designated repository, preferably in magnetic media and
hardcopy for all components except compiled code.

Appendix E shows a sample stand-alone plan (and specific procedures) for a research project.

* Network Storage Sesvice has replaced UKImegmed Files StorC (IFS)

27

A Plan for Reimbursable Projects

A reimbursable project may have requirements to rigidly adhere to IEEE 828-1990 or the DoD
Software Development Standard, DoD-STD-2167a, as it addresses softwme configuration
management as well as other areas. In lieu of external requirements it is highly recommended that
EP401O45 be used for identification and the Drawing System used as the Release Library.

Appendix F contains a phm template that would be -useful, in creating a stand-alone
Selected sections could be consolidated into a chapter plan.

3.2 Standards and Guides

There are several formal standards that a designer could draw from to develop an SCMP. These
include ANSI/IEEE Standards and DoD Standards. DoD Standards are very detailed and require an
extensive identification and tracking system. The principles are embodied in the ANSf/IEEE
Standards and only these are presented here [IEE87, IEE90-a, IEE90-b]. In addition, a few books
are available that discuss configuration management philosophy and application RVA83, EVA87,
BER80]. AIso, Sandia Sojiware Guidelines Vols 1, 3, and 5 [SSGVI, v3, and v5] contain related
information that can bring configuration management more into focus as an important tool of the
software engineering process.

3.3 Project Plan vs. Organization Plan

For many organizations an SCMP at the division or department level would be the most
productive. If all or most of the projects are of similar application, similar size (in terms of code
and manpower), and complexity (in terms of algorithms or functionality), the configuration
management of their software products should be treated in a similar fashion. This allows minor
differences to be treated in a smaller project document and referencing the organization document
for ~ of the activities. This same approach should be taken for a Software Quality Assurance
Plan; use an organizational plan to discuss the normal approach to software quality assurance and
note any deviations, actual interface groups, and project specific methodologies or tools in the
project plan. There are several areas or activities that are best suited to be managed at the
organizational level.

Configuration Identification

The organizational plan should state what kind of identification scheme is used for different
categories of software products. In most cases, the organization will be involved in either WR and
WR-related, or non-WR such as energy research. Planning should center on the use of the Drawing
System if WR, or an organizational identification scheme if not. In some cases where all types of
work are performed, the discussion must differentiate between the two or state that the Drawing
System will be used for all configuration identification.

Baseline Timing

--

Discussion of when software components are baselined can center on the activities that must be
performed and agreements that must be reached before a specific component can be baselined. This

‘L--’

28

discussion should include the development approach normally used in the organization, e.g.,
whether there is a prototyping approach or series of “builds” (Group 1, Group 2, etc.) or a more
singular approach. Specific timing and dates for a particular project are, of course, left to a project
development plan with references to the organizational plan for the mechanics of the process.

Change Control.

An organizational plan can describe the levels of con~ol that organizations should be using to
ensure that orderly and traceable changes are being made to software components. The discussion
will differ depending on the Library (Personal, Project, or Release) in which the software
component is currently located. The critical issues include how the organization wants to treat
changes once a baseline is promoted to the Project Library and the Release Library. The discussion
should describe the methods used to actually control the entry of the changes and will differ
according to the size of tie project and number of people who normally work on projects in that
organization, e.g., peer review, software configuration control (or review) boards. When control or
review boards are discussed, the naming of the members should be left to the project development
plan.

An organizational plan shouId also describe the basis for promoting software from one library to
the next. These are the processes by which organizations manage software component development
to ensure that orderly changes are made and baselines are properly established. Most of these
processes are the same ones that provide for the verification of software components whenever
verification and validation are discussed. These processes include software inspections, structured
walk-throughs, peer reviews, and control (review) board activities and responsibilities.

3.4 Using Procedures Effectively

Sandia has an institutionalized approach that defines procedures for WR and WR-related product
development. This system continues to modernize and has the necessary capabilities to document
and provide an audit trail of the evolution of software components (Non-WR as well as WR and
WR-related) as they are released for inclusion in the complete system. The elements of this syslem
are defined in Engineering Procedure (EP) EP401O4O. Additional EPs describe part numbering and
revision numbering (EP401O16, EP401O33, EP401O54), and Computer Software Configuration
Items (EP401O4O). As the system continues to improve, the ease with which it will function as a
viable Release Library will also improve. For this reason, EP401O45 is the recommended
foundation for identification of all software developed at Sandia and the Drawing System is the
recommended Release Library. Whether or not the Drawing System is used (particularly by non-
WR projects), any organizational or project plan will be well served to use the concepts of
EP401O45 as the foundation of an independent approach.

EP401O4O - Drawing System. EP401O4O defines the Drawing System. The Drawing System
allows for a two alpha-character prefix affixed to a six-digit part number, plus a three-digit
correlation sum, to identify the specific software drawing (computer software component). The
six-digit part number and correlation suffix are also referred to as a control number. With the
alpha-character prefix, the combination is referred to as a support drawing. Hence a support
drawing to a software part number is a CSC.

/’-

29

EP401O45 - This engineering procedure employs the concept of a Computer Software
Configuration Item (CSCI) for identification of software components. Each CSCI is identified by a
unique part number. Below are the codes for various components (CSCS) that could make up a
CSCI for a sofhvare projecti

..

SQ -

SR -

GR -

SD -

GD -

PD -

TK -

AM-

AT -

AI-

MP -

Software Quality Assurance Plan (may also contain Software Quality Plan, Software
Configuration Management Plan, Software Projed Management Plan or Software
Development Plan information) . ..

Software Requirements (Software Requirements Specification)

Graphical Requirements (e.g., Information Models, Data Models, Transformation
Models)

Software Documentation (Software Design Description)

Graphical Design (e.g., Data Flow Diagrams, State Transition Diagrams, Structure
Charts, Flow Charts)

Program Documentation (Source Code in hardcopy)

Test Plan (Includes test cases and test results)

Control Program (Source Code on magnetic media)

Executable Program (The executable code which has been translated into relocatable or
absolute machine code from the AM drawing)

User Instructions (User’s Guides, Checklists, etc.)

Maintenance Procedures (Support program analysis, use, maintenance)

No Prefix. The software part number or CSCI identification. A Materials List (ML)
document will be used to list all required drawings, maintenance equipment, and
support software. The software is assigned a unique six-digit number (initial part
number suffix -00 or -000 for acceptance equipment) and is called out on the top
drawing of the product which utilizes the software.

Figures 3-2 through 3-5 are MLs that show the use of the Drawing System to identify a software
product and its supporting product definition (documentation). Figure 3-2 is the fwst release of the
software product’s components into the Drawing System. Changes to a component that create a new
baseline may be reflected in an advancement of the ‘Issue” (e.g., from Issue A to Issue B). This
does not show up on the ML but would be apparent on the software component documentation.
This could happen if changes in the Software Requirements were made to clarify an issue, defects
were removed from design after inspection, or corrections were made to code in response to a test
failure.

d

30

Figure 3-3 illustrates a ~iznificrmt chan~~ in the baseline of - of the software components,
reflected in a change to the suffix. This represents a fl~n of those components with
different capabilities and a new version for the software Dart itself (Issue B on the ML). This could
have resulted from a new implementation of the design.

Figure 3-4 is art ML of a new version (different capabilities) of the software product (which is
also a new baseline) that is backward compatible (e.g., the new version can be used in applications
calling for the original version; however, the original cannot be used in applications caIling for the
new version). This is shown as a twodigit suffix change io the software part itself. Note the issue
of the ML is now C.

...

Figure 3-5 shows a new version that is not compatible with previous versions and hence, has a
new product number. As an ML of a new part number, the issue of the ML is Issue A. Note that in
this case, the new version is based on a revision of the original requirements.

SC U. NC.L. A.SS.l.F.l.E.O -..---. -.--... -..---. -..-... -.oRAwlNG NuMBE R.. 12-56 ISSUE --A

TITLE-.-S-ARE. MC 1234 PROGRAMMER OESIGN AGENCY CODE IDENT-.. 14213
TIE... SC/ / ORAWING LOCATION-SC OATE.-.O2I17I91

TITLE CLASSIFICATION: UNCUSSlFlE&.------.----.-----....------....-...--..----..-.-------......-.----------.-------------.---.-------.--`.----"--"-"---"`""""-"""""""-""- .-.--.-----.. sHEET”-. 1 of 1

FoR EXPLANATION OF CODES SEE ENO OF CALLOUTS SECTION.

SMITH, J. 2S3WTRAUTH, S. 7324/ Coloo
. Omoo

‘-- STANDARD NOTES ‘“” CQ310

‘. OTHER REQUIREMENTS .“. 1. sTO NOTE D. OE REOUIREO. 00323

s93ccco GENERAL REQUIREMENTS AND DRAWING INTERPRETATION
9919100

00s30

MARKING, GENERAL METHOOS om49

PROOUCT CHANGE HISTORY:

UNIT 0+ MEASURE PROWCTION AGENCY

I NUMSER CODE OESIGN AGSNCY PART CLASS

I IPENTAGON W IDENT PART NuhWER I
.——. .- ————-. —. —-- .—. --. —-.....-. -.

WS4S600 N

-i%-- – —

/

—.-- —----- -PART OR CONTROL NO —-OESCRIPnON--———----— -------------------- --

NA SR123456.000 SOF’IWARE REQUIREMENTS, Mc1234

NA so1234ss-000 SOFTWARE DOCUMENTATION. MC1234

t4A Po1234ss400 PROGRAM DOCUMENTATION, MC1234

NA AT12s4sw03 EXECUTABLE PROGRAM, MC 1234

NA TK2w%ooo sOFTWARE TEST PLANMESULTS. MC 1234

NA AM I 2345&OiXI CONTROL PROGRAM. MC1234

03350
Lmso
009s1

I
T LINE

ENO
-M. -—-

02W3
-.. -.—

EXPLANATION OF COOE.%
OUANTIT1’ COOES--- AR-AS REOUIREO ARS.AS REOUIREO PER ASSEMBLY NA-OOCUMENTS ALT-ALTERNATE ITEM PM-PFICCESS MATERIAL

EM. EXPENSE MATERIAL IALT.INSPECTION ALTERNATE
UNIT OF MEASURE CODES-- IN-INCHES LBFOUNOS OZ.OUNCES AvOIRDUPOIS TZ-OUNCES TROY GGRAMS FT-FEET YO-YAROS PC-PER CENT

MM+AJLUMETER KG40LOGRAM
PART CIASSIFICATION COOES-- UNCLASSIFIED. N

\

se.-..---------.--.. -.-... --.----. ----. --------. ----. -.--. ------.. ---. . ..-U-Nc.L-A.s.S.l. F.1.E-o-----.------------------------------"-"--"---".DRAwlNG NuMBE R.-. 1~4= ISSUE--- A

Figure 3-2. Software Part Identification, Supporting Documents

F-

31
..-

“-../’

SC-. ---. --.-----. ----.-. -----. -..-.--.----. ----. ------. ----.. -----.. --.--. ------------. --. U-N. C-L. A.s.s-l.F-l. E-D ---. -.--------.----------------.--ORAWING NuM8ER.-. 123456 ISSUE—E
TITLE-SOFTWARE. MC 1234 PROGRAMMER DESIGN AGENCY COOE IOENT---14213

TIE--.SCJ / DRAWING LOCATION--SC OATE-132J2W91
TITLE CLASSIFICATION: UNC~SSIFiED-..----.. ---------. -. ...-.. -..-...-. -..-------.. -... -.----. -..---. ---. ---. ---. -----. -----------------------. --.---.. -..-. -.-. --.-. --... sHEET... 10F 1

\
FOR EXPLANATION OF CODES SEE END OF CALLOUTS SECTK)N.

SMfTH. J. ~RAuTH. s. 7324/ 00100 $
..- —.-.. ———. .—. —-.... Ixsco

‘- STANOARO NOTES ““- 03310

- OTHER REQUIREMENTS “.. 1. sTO NOTE 0. OE REQUIRED. 07320

99xm@J GENERAL REQUIREMENTS AND ORAWING INTERPRETATION 00320
99191W MARKING. GENERAL MERIOOS .“.. 06949

_. —-- 00353
PRocxICT CHANGE HISTORY: wsso
1. REWSED IMPLEMENTATIoN OF CONVERT ALGORYTHM CXM31

UNIT OF MEASURE PROWCTIO?4 AGENCY I

I NUMSER cOOE OESIGN AGENCY PART CLASS T UNE

I IPENTAGON W IOENT PART Pu_lMSER I ENO
—-— —— —- -M- —

u) 12245&co N Oxw)

-oTY- – —----PART OR CONTROL NO —OESCR~PTION ——

NA SRI 224S6-C@JI SOFTWARE REQUIREMENTS, MC1234 02600

NA so w34sooo ~ARE DOCUMENTATION. MC1234 02610

NA mnwxwm PROGRAM 00CUMSNTATION, MC1 234 020a3

NA AT12S4S6#M ExECUTABLE PROGRAM. MC1234 02s30

NA TK122.456-OW sOFTWARE TSST PLANIRESULTS. MC1234 03340

NA AM1234S6001 CONTROL PROGRAM, MC1234 033s9

SXFtANATION OF COOES-
OUANTITY COOES- AR-AS REOUIREO ARS.AS REOUIREO PER ASSEMSLY NA.CXXXJMENTS ALT.ALTSRNATE ITEM PWPROCESS MATERIAL

EM-EXPENSE MATERIAL IALT4NSPECTION ALTERNATS
UNIT OF MEASURE COOES- IN-INC+IES LS-POUNDS OZ.0Ut4CES AVOIRDUPOIS lz-ouNCES TROY G.GRAMS Ff-FEET Yo-YAROS PC-PER CENT

M+A-MtLUMSTER KG-KILOGRAM
PART CLASSIFICATION S00SS– UNCIASSlflEO N

SC----... -.-. -------.. -.----------.---.-------..-.-----.-------------U-N.C-L-A-S.S.!.F-l.E-0-------------------------ORAWlNG NUMBER. - ~234~ tsSUE- 8

/

Figure 3-3. Version Change to Some Components

32

/----

se.–..-.—_– _____________ ----.-----.---------..---------U-N-C.L-A-S-S-l-F4-E-D ----—---—-—-------—--DRAWING NuM8ER--l=* ISSUE-C
TITLE-SOFTWARE, MC1234 PROGRAMMER DESIGN AGENCY CODE IDENT-.-14213

nE–scl I DRAWING LOCATION-SC DATE--OW2G91
mTLE CLk3SlFlCAT10N: UNCLASSIFIED--–--————————— — -—.—-.——.—— ——--—---SHEET-- 10F 1

FOR EXPLANATION OF COOES SEE ENO OF CALLOUTS SECTION.

SMITH, J. ~UTH, S. T324/ 00103
—-.————. mmo

- STANOARO NOTES - 03910
‘-. OTNER REQUIREMENTS ‘- 1. STO NOTE 0. QE REWIREO. Oomo

.-..
9moom GENERAL IWOUIREMENTS ANO ORAWING INTERPRETATION 0m20
99191m MARKING, GENERAL METHOOS 03949

. ..- ———-— m9m

PROOUCT CHANGE HISTORY Omso

1. WZVISEO IMPLEMENTATION OF CONVERT ALGORYI’HM 00901
2. REQUIREMENTS CHANGE TO AGO SWITCH OPTIW 0om2

UNIT OF MEASURE PRODUCTION AGENCY
t NuM8ER
I PENTAWN MI

.--— ——- .-—-——..

40”
.01

--QTY- -oTY- - ———.-.-.———

NA NA

NA NA

NA NA

NA NA

NA NA

NA NA

COOE OESIGN AGENCY
IoENT PART NUM&?R

I
PART CLAW T UNE

I ENO
...— ——.-_—- +A’ -—

‘—%%e N 020m
N Oaol

—PART OR WNiROL NO --—DESCRIPTION--——--–---————— - —

SR1234S6001 sOFIWARE REQUIREMENTS, MC1234

SD1234%O01 sOFTWARE OESIGN. MC1234

PD1234s6002 PROGRAM OC)CUMENTATION, MC1224

ATi22&6002 EXECUTABLE PROGRAM, MC1234

Tu1234m-ool sOFTWARE TEST PLANMESULTS, MC1234

AM1234564W CONTROL PROGRAM, MC1224

.—

02scG

02610

02620

02s30

02s40

02653

.ENO OF CAUOUTS SECWN ---
.

EXPIANAmON OF COOES-.
OUANTITY COOES- AR.AS REOUIRED ARS.AS REOUIREO PER AsSEM13LY NAOOCUMENTS ALT-ALTERNATE ITEM PM. PROCESS MATERIAL

EM. ExPENsE MATERIAL lALT.lNSPECTON ALTERNATE
UNW OF MEASURE COOES--- IN4NCHES LB-POUNOS OZ-OUNCES AvOIRDUPOIS TZ.OUNCES TROY G-GRAMS FT-FEET YO.YAROS PC.PER CENT

MM. MILLIMETER KGKILOGRAM
PART CLASSIFICATION COOES--- UNCLASSIFIED N

SC U. N. C. L.A.S.S.l.F.l.E. O..ORAwlNG NuMBER--- 1234= ISSUE-- c

Figure 3-4. New Version, Backward Compatible

/--=

33

sc—-–-—-—–———— / -.-.. _._--__.-_---. U. N. C. L.A-S-S-l-F.l-E-D --—-—------------—----DRAWING NUMBER---W321 ISSUE—A

mTLE--SQFlWARE, MC1234A PROGRAMMER DESIGN AGENCY COOE IOENT--14213
nE--scJ I DRAWING LOCATION---SC DATE-44122A 1 K

TITLE CLASSIFICATION: UNC~lFlE&--- —. —. ——..-...—--------------------------------- SHEET-- 10F 1 \

FOR EXPLANATION OF COOES SEE END OF CALLOUTS SECTION

- OTNER REQuIREMENTS ‘<

QwGom GENERAL REQUIREMENTS ANO DRAWING INTERPRETATION
99191W MARKING, GENERAL METNOOS

uNIT OF MEASURE
i
I

-00
-oTY- -

NA

NA

NA

NA

NA

NA

SMITN, J. 2S33KRAUTK. S. 73241 Wloo
——- —-. .—. - .-. W3co

‘“” STANOAFIO NOTES ““ Cc910

1. STO NOTE O. QE REcXJIREO. C0320

W330
.- ..” C0949

Cceso

PROOUCT CHANGE HISTORY: W3so

1. NEW DESIGN SASEO ON ORIGINAL REQUIREMENTS O@sl

PROOUCTION AGENCY I

NUM6ER WOE DESIGN AGENCY PART CLASS T UNE

PENTAGON W 10E~ PART NUMBER I ENO
-A+ —

~-%%’

N 020w

CCWTROL NO --OESCRJPTICfi —-. ——

sR1234s&oo2 SOFIWARE REQUIREMENTS. MC1234A C@30

SD6s4s21.cuo sOFtWARE 00CUMENTAW, MC12S4A O’itvo

P0654S2N3W PROGRAM DOCUMSNTAmON. MCI 234A 02620

ATss4S21.000 EXECUTABLE PROGRAM, MC K234A 02620

TK6w321a30 SOFIWARE TEST PIANiRESUL_B, MC1234A 02s40

AM6S432taoo CONTROi PROSRAA4 A4CW34A 02659

ENO OF CALLOUTS SECTION

EXPLANATION OF cooss-
0U4NTTTV COWS--- AR-As REOUIREO ARS-AS REOUIRED PER ASSEMSLY NA-OOCUMENTS ALT-MTERNATE ITEM PM-PRWESS MATERIAL

EM-EXPENSE MATERIAL IALT-INSPECTION ALTERNATE
UNIT OF MEASURE CODES- IN-INCHES LE-POUNDS OZ-CNJNCES AVOIROUFOIS lz-oUNCES TROY G-GRAIAS H-FEET YD-YAROS PC-PER CENT

MM-M&LIMETER KG-KlLOGl14M

“---’

PART CUSSIFICATION CODES- UNCLASSIFIEO N
H

s~ —UN.C-L-A-S-S--F-l-E—~ —ORAWING NUMBER-654321 IsSUE- A

Figure 3-5. New, Version - Not Compatible With Previous Versions

34

n

4 Making Configuration Management Work for You

In the previous chapters, several software configuration management concepts and activities
were dkcussed, and the planning for configuration management was presented. The purpose of this
chapter is to show how these concepts, activities, and plans can be applied in an effective way to
your project. In particular, use of software libraries (and associated tools to generate and maintain
them) and configuration control authorities, such as a Software Configuration Control Board, can
help a project implement SCM. ExampIes are given to further clarify what level of configuration
management makes sense.

4.1 Establishing a Configuration Management Concept and Plan

Configuration management need not be viewed as just another set of procedures mandated to
make software development more time-consuming, costly, and cumbersome. Rather, it should be
viewed as a set of procedures that will facilitate the identification and control of software baseline
configurations and the configuration items within the baselines. Basic concept and planning
guidelines are summarized in Figure 4-1.

●

●

✎

✎

●

I b

Concepts and Planning Guidelines

Plan for the proper level of SCM depending on the size and complexity of the project

Establish an identification scheme and control structure that is applicable to the project’s
need (Note: The Drawing System (EP401O4O) and Definition of Computer Soflwarc
Configuration Items (EP401O45) are applied directly for WR systems and may be used in
any other application. If not used, fiuniliarity with their content is useful as a reference in
establishing an independent approach)

Identify which software products will be produced and controlled

Identify how a software product that is under configuration control is changed during
development and support

Determine how libraries will be used to store and control software products

Write an SCMP appropriate for the planned level of support

Figure 4-1. SCM Concepts and Planning Guidelines

35

4.1.1 SCM Alternative Concept
.

The software configuration management plan (discussed in detail in Chapter 3) should be written
as to make the software developer’s and supporter’s job easier, not harder. Much of the SCM
concept will be dependent upon the project size - based on Source Lines of Code (SLOC), type,

complexity, and criticality. Some guidelines for determining this level are presented in Figure 4-2.
The SCM concepts in Figure 4-2 (Limited, Basic, Full, and Alternate) will be summarized in the
foUowing paragraphs.

PROJECT SIZE

Project SMALL MEDIUM

Type <1OKSLOC* 10-50K SLOC

WR/WR-Like Basic Full

Non-WR
Embedded Basic Basic/Full

Non-WR
Information Limited Basic

Non-WR
Research Limited Basic

Non-WR
Reimbursable Alternate/Basic Alternate/Full

LARGE

>50K SLOC

Full

Full

Full

Full

Alternate/Full

I * Source Lines of Code

Figure 4-2. Guidelines for Selecting the Appropriate SCM Level

SCM Plans in the Appendices C, D, E, and F serve as examples for some of the combinations
shown in Figure 4-2. The abbreviations for software products used in the following paragraphs are
from EP401O45: Software Requirements (SR), Software Documentation (SD), Software Source
code - hardcopy (PD), Software Test Plan (TK), Software Source Code - magnetic media (AM),
Software Object/Load (AT), Graphical Requirements (GR), Graphical Design (GD), and Software
Quality Assurance Plan (SQ).

36

SCM Concepti Limited

(1)

(2)

(3)

(4)

(5)

(6)

(7)

SCfvfR Informal and smaII SCMP (3-5 pages).

Software Configuration Control Board (SCCB): Informal one-person librarian; might
inciude a higher level authority (e.g., manager or project leader) responsible for higher level
organization configuration management activities.

Software Productx Informal SR, PD. TK, AM, AT (SD information appended to SR or
embedded in PD); not released to outside customer.

Use word processor for automated control toed development of any software written
documentation. Drawing tool used for automated development and control of graphic
documents such as GR and GD supplements to SR and SD. Hardcopy and electronic media
form of documents maintained by Librarian.

Use some code automated control tool during development. Software project leader
assumes Librarian role. Software released directly to user from project library (separate
from the personal library). Final form of the project library is the initial release library.
Contents are not typically submitted to the Sandia Drawing System for archival/backup
purposes. Separate copy maintained by the Librarian for reference (and possible use during
follow-on support activities).

Informal problem reporting and status accounting during development and support.

fichiv~ for ba&Up/rwOvery is On an informal basis controlled by the individual/team

development standards.

37

“--

SCM ConceptiBasic
.

(1)

(2)

(3)

(4)

(5)

,- (6)

(7)

SCMR part of SQAP, or small SCMP (3-5 pages).

SCCB: Small 2- to 3-person software review authority

Software Producw. SR, PD, TK, AM, AT (SD information appended to SR or embedded in
PD).

Use word processor for automated control tool development of SR, TK, SQAP/SCMP
documents. Drawing tool used for automated development and control of graphic
documents such as GR and GD supplements to SR and SD. Hardcopy and electronic media
form of documents maintained by Librarian (Software Projeet Leader or designee) after
inspection.

Use source code automated control tool during developmen~ Software project leader
assumes Librarian role. Software released direetIy to Librarian (projeet library) from the
Developer (personal library) after inspection and unit test. Final form of the project library is
the initial release library and contents are submitted to the Sandia Drawing System for
archival/backup purposes. Separate copy maintained by the Librarian for reference (and
possible use doring follow-on support activities).

Informal problem reporting and status accounting during development and support.

Sandia Drawing System used for archivat and change control after delivery.

38

SCM Concepti Full

(1) SCMR separate full SCMP.

(2) SCCB: minimum of system project leader, software project leader (chair), Librarian, test
engineer, ‘and the software technical leaders as needed. Involve division managers of
organizations. SCCB part of a larger System CCB. The control authority would be in
accordance with plans and standards that might bridge more than one organization. SQAP
would reference the SCMP.

(3) Software Products: SQ, SR, SD, PD, TK, AM, AT

(4) Use network control of projeet resources (word processor, source code control, problem
reporting and tracking, project management, other support tools compilers, linkers). Word
processor used for automated control tool development of SR, TK, SQAIYSCMP documents.
Drawing tool used for automated development and control of graphic documents such as GR
and GD supplements to SR and SD. Hardcopy and electronic media form of documents
maintained by Librarian (Software Team Member) after inspection.

(5) Use source code automated control tool during development. Software Librarian role may
be full time or a shared role by one of the software developers. Software products formally
released to Librarian (project library) from the Developer (personal library) after inspection
and unit test. Final form of the project library is used for system/integration test: Changes
are controlled through a problem repordchange form. Project Iibrary and contents arc
submitted to the Sandia Drawing System for archival/backup purposes. Separate copy
maintained by the Librarian for reference (and possible use during follow-on support
activities).

(6) Rigorous problem reporting and status accounting during development. Any changes to
software products released to the projeet would be processed through the SCCB using a
change control form.

(7) Sandia Drawing System used for archival and change control after delivery.

39

SCM ConceptiAlternate

(1)

(2)

(3)

(4)

(5)

(6)

(7)

SCIVIRdictated by customer (typically DOD-STD-2167A SCMP).

SCCB: dictated by customer customer may have a representative on the SCCB depending
upon the project’ size. Similar to Basic or Full concepts. Control authority would be in
acemlance with organizational plans and standards that might bridge more than one
organization. SQAP would reference the SCMP. - ~~

Software Productx Identification might vary, but would still be similar to SNL system: SQ,
SR, SD, PD. TK, AM, AT.

Use network control of projeet resourees (word processor, source code control, problem
reporting and tracking, project management, other support tools: compilers, linkers). Word
processor used for automated control tool development of SR, TK, SQAIYSCMP documents.
Drawing tool used for automated development and control of graphic documents such as GR
and GD supplements to SR and SD. Hardcopy and electronic media form of documents
maintained by Librarian (Software Team Member) after inspection.

Use source code automated control tool during development. Software Librarian role may
be full time or a shared role by one of the software developers. Software products formally
released to Librarian (project library) from the Developer (personal library) after inspection
and unit test. Final form of the projeet library is used for system/integration test Changes
are controlled through a problem repat/change form. Project library and contents are
submitted to the Sandia Drawing System for archival/backup purposes. Separate copy
maintained by the Librarian for reference (and possible use during follow-on support
activities).

Formal problem reporting and status accounting during developmen~ with the customer
interaction. Problems would be reported using a problem report form.

Sandia Drawing System used for archival and change control after delivery.

40

...
“-’

4.1.2 Plan to Use the Sandia Drawing System

The Drawing System identification scheme (EP401O45) discussed in Section 3.4 is typically
associated with WR and WR-like software. It should be used for all software called out in DOE
Order 1330.lC unless a specific project rqdres something else. This means all controlled software :

product items will have an identification number consisting of a two-character, software-type prefix,
a sixdigit part number, a three-digit revision (correlation) suff~, and an issue letter. For example,
SR123456-O02, Issue J would represent Version 2, Issue J of the requirements specification
document for software part 123456.

4.1.3 Identify Software Parts and Control Authority

A major part of the SCM concept and planning stage is to identify which software component
parts will be controlled: documents, source, object, data base, data files, support equipment, and so
forth. Minimally, it is recommended that the software include a requirements specification, design
document, test plan, source and support data files, and an executable copy of the software code.

Those persons with rhe authority for establishing software product baselines and formal approval
of changes to that baseline should be identified. During software developmen~ it will probably be
the system project leader or the software project leader. It may also involve a customer
representative and/or a supplier representative. During support, it will depend upon who has
responsibility for the software support function and how the Sandia organizational configuration
management concept is implemented (see Appendix C). The person with the final authority on
software changes should be the SCCB (or software configuration review board) chair. A software
Librarian should be appointed from among the software team members to control developmental

L.’

releases of the software product and provide information for the SCCB. Other SCCB roles should
be identified as necessary.

4.1.4 Identify SCM Relationships

Identification of the relationships among the customer, user, developer, supporter, and any
supplier is critical to the success of SCM. If the customer is internal to Sandia, such as an
Information Resource Management group, or a Systems Engineering group, then representatives of
each interest group should be assigned to the SCCB. If the customer is external to Sandia, then
ensure the customer has adequate review and approval of the SCMP. Acquaint these cus~omcrs with
the software change process so that they can submit change requests. These change requests may bc
a result of major program reviews, demonstrations, failures during system operation, or may be
desired enhancements. Any software suppliers for a Sandia system should provide evidence that the
supplier’s own internal software configumtion management satisfies Sandia’s requirements.
Supplier requirements are stated in the SCMP. Minimally, procedures for delivery and installation
of standard vendor software updates, and expected vendor responses due to any vendor soflwarc
failures should be a well-defined part of the SCMP.

4.2 Establishing Change Control Procedures and Authority

Once the configuration management concept has been established, the next step toward
implementing configuration management in a sensible, painless way is to define change control

41
,.

procedures and the associated change authority level. The interrelationships among change control
. procedures, change authority, and baseline configurations are described in this subsection. Baseline

configuration items are stored in libraries Personal, l%ojec~ and Release. Details of the use of
Iib&es are described in subsection 4.3. A basic list of guidelines is illustrated in Figure 4-3.

.

.

.

●

✎

●

Change Control and Authority Guidelines
.

Define required change controI procedures and baselines - Allow for flexible change control
paths for time (normal, emergency) and change type (major, minor)

Define personnel positions responsible for SCM, including the software Librarian and the
SCCB - Identify control level

Define SCCB group logistics and meeting procedures

Run SCCB meetings in standard fashion: identify issues, assign responsibility, make
acceptieject/defer decision

Incorporate libraries and associated automated tools to assist the change control process and
provide a reporting link to status accounting

P
Figure 4-3. SCM Change Control and Authority Guidelines

4.2.1 Change Control Procedures

Change control procedures are dependent upon establishing a baseline configuration to which
changes can be applied. The recommended baselines as they evolve during the software life cycle
include:

(1)

(2)

(3)

(4)

Functional: configuration items include the system functional documents that describe the
system operational concep~ the system functional requirements, and any manufacturing
environment system requirements. It is from these system documents that software
requirements are specified and/or derived.

Allocated: configuration items include the software requirements specification, the
hardware requirements specification, and necessary external and internal interface
requirements specifications.

Developmental (Design): configuration items include the software requirements
specification, the design Wecflcation, and the test plan. Other documents could include the
software quality assurance plan and the software configuration management plan. ‘

Developmental (Implementation): configuration items include the Developmental (Design)
baseline plus the software source/object code and the unit/component test cases/results.

42

(5)

(6)

Other documents could include the maintenance plan, user guide, operator manual, and so
forth.

Producti configuration items include all software products that will be released to the
customer, typically the Developmental (Implementation) baseline plus the system test :
cases/results.

Product (Version/Issue Updates): configuration items include the Product baseline plus
the changes to individual product baseline items.

The change procedure involves coordination of change requests across the various levels of
change authority to ensure that the baseline configuration items can effectively evolve to include
corrections, enhancements, and adaptations to changes in the operating environment. Elements of
the change procedure are depicted in Figure 4-4.

4.2.2 Change Control Authority

Change control authority depends upon the level of desired control. For software items being
controlled at the lowest level by individual persons as part of their personal library, the responsible
individual is the only authority. For promotion of items from the personal library to the project
library, the items should pass a software inspection and (if it exists) the approval of the Software
Configuration Control Board. After promotion to the project library, any changes must be approved
by the software inspection team and/or the SCCB. Promotion of the software items in the project
library to the release library (approved for delivery to the customer) is the responsibility of the
project manager and the project CCB (if it exists). The CC13 and the SCCB may be the same on u

small projects. ‘

Levels of Change Authority

A key concept to understanding effective use of SCCBS is that of different levels of authorily or
control. The level of authority may refer to the personnel or the procedures required for approval.
Levels of control should be established for various kinds of changes to each of the different classes
of libraries. The types of changes that require different levels of approval authority should be
clearly identified. Procedures involving the approval of changes by an SCCB should then bc
established for each promotion path between libraries and for each type of change, forming a
progressive hierarchy of approval levels as a project builds a software product. These procedures
might require that more than one SCCB be established for various types of changes at a given level
or that a single SCCB have responsibility for more than one approval level. For instance, inclusion
of a minor error correction into a library might require approval from a different SCCB than the one
that would grant approval to the addition of a major new feature. The approval procedures required
for minor, major, emergency, or normal changes should vary within the same SCCB structure. The
key is to provide required response efficiently and effectively so that changes are implemented
correctly in a timely manner.

Levels of authority may vary with the software’s development life cycle phase. For example,
changes to software in an early developmental stage typically require a lower level of authority for

43

approval than changes made after release, when the potential impact is much greater. The larger the
impact of a change on developmental resources, schedule, number of users, software functionality,
or interfaces, the greater level of authority that would normally be required.

Characteristics of SCCB Members

The SCCB is dependent on the size and nature of the development projec~ and on the level of
approval required for controlling a change to a specific library. For small projects, a single
individual authority level tnay provide satisfactory control. This individual may be the developer
(or cognizant manager, if some level of management control is desirable), and might be given the
authority for approving and promoting changes for any of the libraries. At the other extreme, a very
large and critical software development project might require two or three (or perhaps even more)
different SCCBS, each composed of several people drawn from appropriate technical staff and/or
management, with different levels of authority and control. The key point to be made here is thal
the membership of an SCCB must sensibly reflect the needs of the software project for control of
changes to a iibrary at a given level.

SCCB members must be knowledgeable on the important factors to consider in approving a
change such as technical, economic, or political issues. For changes that involve a significant
technical component (e.g., modification of a numericrd solution algorithm), approval should be
made by an SCCB with substantial technical expertise and with sufficiently intimate knowledge of
the details of the modification to pass judgment on it. This SCCB could be the developer or group
of developers on the project if adequate assurances can be made that the review process leading to
approval is sufficiently independent. Often the development team is the only source of such
technical expertise and knowledge of the software.

For changes that involve questions normally reserved for management to answer, such as
whether a major new feature should be added based on schedule/cost risk or political considerations,
approval should be made by an SCCB with corresponding management representation and
authority. Obviously, the larger the impact of the new feature (economically on the project,
politically on the user community, or technically on the software functionality), the higher the
SCCB authority level that maybe needed.

SCCB members should have a vital interest in other organizations or customers that interface
with the software products. For instance, change to a software product that may affect the function
of another piece of software or hardware should be reviewed by someone responsible for that related
product. If a new f=ture not specified by the requirements is desired to be implemented by the
developer, the customer should be involved in approval of that change. Such interfaces must be
considered prior to change approval. Appropriate representation on an SCCB by personnel from
interfacing organizations and customers provides a formal means to ensure that effort is not wasted
because of unforeseen side effeets or miscommunication.

Interfaces among various SCCBS may exis~ both within the project and with other
organizations, and these should be clearly defined. In particular, identifying lines of
communication, areas of responsibility, and relative levels of authority are each issues that should
be explicitly spelled out.

,,--,

45

‘.-J

SCCB Functions and Change Procedures

The exact function or role carried out by a SCCB and the process by which it accomplishes its
function must also be c~efully considered. A software project should have established one or more
mechanisms to generate and/or receive Software Change Requests (SCRS). The project should
identify how such requests receive preliminary approval for resolution, and what role the various
SCCBS should play at this point. For a major software change, it may be necessary for a
management-level CCB to gntnt preliminary approval befoie resources are committed to resolving
the change request. For minor changes that do not require substantial resources, it maybe entirely
adequate for a change to be made in a developer’s personal library before consideration by an SCCB
for promotion to a project library.

Interim approvals by an SCCB may also be necessary for lengthy, time-consuming changes.
Following preliminary approval to proceed with development of a plan to resolve an SCR,
considerable effort may be required just to develop that plan. Interim approval of that plan by an
SCCB maybe desirable before proceeding with plan implementation (i.e., writing or modifying the
code). Revision of the plan may require additional interim approvals.

An SCCB must grant final approval for implementation of a particular software change into a
baseline library. The nature of the review required for approval should be clearly defined. For
some informal projects, it may be sufficient to perform a broad top-level review without examining
the technical details down to the line-of-code level. For critical projects, it may be necessary to
conduct a detailed line-by-line software inspection to give reasonable assurance that the new coding
is fault-free and does not adversely affect the performance of other parts of the software. The nature
of this review process, which also may vary according to the type of change being made, also
suggests additional criteria may be required for appropriate level of authority and makeup of the
governing SCCB.

Procedures for approving third-party or off-the-shelf software, for use within a project, need to
be specifically addressed by an SCCB. Such software may include public domain, vendor supplied,
vendor supplied but modified, subcontractor developed, proprietary, or reusable software developed
by another projeet. The extent to which such software must be cheeked, tested, documented, and
updated by later third-party changes should be defined.

Other SCCB proceduml issues to be resolved include disagrwments within the SCCB, frequency
and duration of review meetings, timely review of SCRS and changes, and so forth. The answers to
these questions all depend on the other considerations raised in this section; there is no single
answer, other than to do what seems to make the most sense given the particular needs of the
software project.

4.3 Using Baselines and Libraries

Once the configuration management concept, change control procedures, and change control
authority levels have been established, the softw~e project must make effective use of libraries.
Guidelines for the use of libraries are summarized in Figure 4-5.

46

Use of SCM Libraries Guidelines

. Identify the levels of libmries to be used. Recommend use of personal, project, and release
libraries as a minimum for all projects.

● Define libraries for documentation (for word processor forms of software products), and
source code management (for source, data, build form of software products).

.

. Define the promotion procedures between libraxy levels, including interface with the
change authority and the change procedures.

● Incorporate libraries and associated automated tools to assist the change control process
and provide a reporting link to status accounting.

Figure 4-5. SCM Libraries Guidelines

Libraries are simply cokctions of files (usually electronic) that contain the various software
component products. Libraries provide the means for identifying and labeling software components
and for tracking the status of changes to them. The trend is for increasingly sophisticated
Computer-Aided Software Engineering (CASE) tools to be used to automate the management and
use of libraries. The extent to which these tools are advantageous or necessary depends on the level
of complexity of the software product and the programming environment. Examples of libraries
include:

(1)

(2)

(3)

(4)

Word Processor System: to control text parts of software documents

Graphics Processor System: to control graphic drawings associated with the software
documents

Source Code Management System: to control source code, source code internal
relationships, data, object builds

Change Request Tracking System: to control the logging of change requests and tracking
of their change status (open, closed, deferred, rejected) and implementation in releases.

One principal function of software libraries is the implementation of a configuration control
scheme for development baselines. These baselines evolve throughout the development process
until the final developmental baseline becomes the product baseline released to the customer. This
same scheme can be used during the support phase to process changes to the product baseline. This
identification scheme depends upon the underlying structure of the software as well as the
programming environment and SCM tools. The libraries thus define the status of the software
configuration at any time by referencing a beginning point (system functional baseline version),
establishing the initial software baseline (allocated requirements baseline), and the various stages of
the development process through development baselines that contain any modifications that have
been made since the baseline was defined. They also provide a means for relating file nomenclature

/--

47

(e.g., file names for software units and components) back to the configuration identification scheme
(e.g., the software unit, component, and configuration items names).

Software libraries are used as tools to manage the contlgttration evolution of the software
development baselines such that changes are made in a systematic, controlled way and that the
configuration is not inadvertently (or purposefully) corrupted. This ensures that the status of the
software is well-understood at all times and that changes have not been made without having gone
through a process of =view, approval, and authorization for implementation, producing an audit
trail. Libraries can also serve as means to control access to software components, with standard
procedures to be followed and checks made via passwords or authorization lists to be able to
successfully modify them. Thus, a certain amoont of safety and protection (against 10SSor deletion,
accidental or intentional) is afforded in a convenient way to software components through effective
use of a library structure.

Levels of Libraries

The number and types of libraries will vary from project to project according to the size and
complexity of the software product and the organization and specific needs of the software
developers. There are fundamentally three levels of libraries as described in Section 2.2; personal
library, project library, and release library. They serve different functions during the course of
software development.

The degres of formality governing the access to libraries and the authorization for changes to
them depends heavily on the nature of the project and on the software itself. For a small project,
often involving only a single code developer, less formal procedures can be established to access
and use the various libraries. However, many developers find it difficult to exert the self-discipline
necessary to keep their work orderly, with little thought given to baselines and systematic change.
Therefore these procedures, however informal, should be clearly stated in an SCM Plan and then
followed.

Example: A Small Research Project

Consider a developer working on a very small analysis program of perhaps a thousand lines of
code. Once the program is capable of functioning in some minimally acceptable way (e.g.,
successfully executing a set of test problems) the code may be promoted to a controlled project
library status, forming the first internal baseline version of the program. Subsequent modifications
in response to fim.her testing and debugging or addition of new capabilities (made to copies of the
project library in the developer’s own personal working space) are carefully delineated, justified,
and systematically incorporated into the official project library. These modifications form new
internal baselines when criteria established for promotion are satisfied (e.g., successfully repeating
previous tests or executing new ones).

It is very important that the personal library working space be kept separate from the project
library, for example in different directories. When a version of the program satisfies all
requirements established for it, the project library may once again be promoted to official release
library status. Once this happens, the new version of the code must not be changed and the release
baseline should be archived in some fashion. Additional modifications necessary after release will

48

..

‘u

.

form the basis of another version. This kind of development is typical of research and development
environments.

Example: A Large Software and/or WI? Project

Many project.i are much more formal by virtue of their size or the critical nature of their
sofhvare. For very large software development projects, work must be carefully coordinated to
ensure that coding modifications do not alter carefully defined interfaces or otherwise affect the
function of other software units. If multiple developers work on the same portions of the software,
additional SCM controls must be established to prevent the possibility of incompatible or lost
changes. For example, if two developers mo&fy the same routine in paralleI for different reasons,
some means must be found to identify and reconcile any differences before the modifications are
incorporated into the official project library.

All software that resides in weaDons orismrto f weapons-related svstems would be considered
c “tical software.n Probably the most important aspect of critical software development from a
configuration management standpoint is that there should never be just one person involved. At the
very least there should be a developer and a reviewer. Typically there are several people on a team
assigned to develop and test critical software. In critical software development programs, corrupted
software can be the cause of equipment failure or personal injury or death. In this case, password
control atone or more levels is usually the minimum protection provided the library.

Many operating systems allow the creator of a file to specify which users can access files and at
what level (e.g., read only, read/write, no access). Furthermore, some systems are capable of
tracking file access. Limiting access to libraries through these means can be a reasonably effective
method to control who can have a “need to know” access, and prevent inadvertent changes to the
software products. Most classified machines have more strict administrative procedures and
automated protection mechanisms for access control. Few have any kind of external link.

4.4 Managing the Release and Concerns After Release

There are some special concerns that should be addressed during the software development
process to facilitate the management of the initial software release and subsequent software releases
during the software support phase. Some of these concerns include:

(1)

(2)

(3)

(4)

Transition of SCM to support activity

Changes to application system software

Changes to vendor equipment and software

Reuse of software in other applications

Transition of SCM to Support Activity

The support activity is simply the organization that will have the responsibility for supporting
the software after its initial product baseline release deIivery to the customer. This support activity

,-..

49

‘u/’

may be the original software development group, or some other group defined by the customer. The
transition of the SCM function to the support activity should be addressed in the SCMP. h is
critical that this transition be clearly understood early in the software development life cycle. It is
very difficult to transition a software system to a support activity that has different computer
equipmen~ library systems, identification schemes, change control procedures, and personnel who
are not familiar with the”software. Since some of this may occur (see the next few paragraphs) even
if the development group is the intended support activity, plans for possible evolution should be
integrated into the transition concept.

Establishing a compatible software support environment is a critical part of the transition of
SCM to the support activity. The initial support environment should include computer equipment,
system support sofhvare, test equipmen~ and simulation/emulation capabilities that are as close as
possible to the development environment. There may be security concerns that must be addressed
to provide separate facilities for classified software, data, or testing.

Changes to the Application System Software

Changes to the application system software are the primary concern of
Planning for those changes and integrating the change concepts into the
important parts of the SCM development activities.

the support activity.
SCM transition are

The SCM activities are intertwined with and a major part of the software support concept. One
of the activities during development (and also during support) that facilitates p~anning for SCM is
establishing an estimated change profile. In order to estimate resources required for the SCCB,
Librarian, and other configuration management activities, it is necessary to understand how much
change activity is expected. This change activity should include an estimate of when future
software releases can be expected and what level of changes will be included. Changes can be
corrections, enhancements, or adaptations to environment changes, so the expected change activity
should be stratified across these change types. Typically, most organizations can use historical data
or heuristic estimations to complete the projected software change profile. Agreement among the
customer, support activity, and development team is also an important part of establishing the
projected software change profile. This type of “Software Support Concept” information should be
included in a project computer resources integrated support plan or perhaps an integrated logistic
support plan.

Changes to Vendor Equipment and Software
*

Changes to vendor equipment and supporting software can have a major impact on application
software systems. It is critical to control configuration of this equipment if it is critical to either the
continued support or operation of the application software. products that should be controlled
includa

(1)

(2)

(3)

Computer system models used for support

Operating systems

Compilers, linkers, run-time support software used to build the production software load

‘._.---”

50

(4)

(5)

(6)

(7)

Computer system models used for operation

Test equipment and software used in the unit, component, integration, and/or system test of
the software

Any software developed on subcontract

Written documentation on any of the above products

A related issue is the availability of such vendor equipment and software. If the vendor goes out
of business or is absorbed by some other business, what is the availability of the critical vendor
components upon which the application software systems is dependent? For example, if a real-time
operating system from vendor A is embedded in an application software system, and vendor A goes
bankrup~ how are future copies of the operating system obtained? How are changes to the
operating system accomplished if a fault is discovered? Will the source code be available (perhaps
for a price) so the support activity can assume its support? These issues should be addressed in the
Supplier Control subsection of the SCMP. This subsection includes discussion of any Subcontractor
Software and any Vendor Software. Further issues to consider are described in IEEE Std 1042-1987
~7].

Reuse of Software in Other Applications

Perhaps the only way in which software productivity will be significantly improved (one or two
orders of magnitude) is through reuse. The SCM activities of identification, change control, status
accounting, and audit are all major contributors to improving the chances that application software
can be reused. SCM provides evidence that a software product is well-defined and controlled. This
information aflows for efficient analysis of the software for potential reuse applications.

The ability to retrieve software products after release, adapt the software products to another
application, and redefine the new application baseline is a direct function of software configuration
management activities. In some cases, it may even be necessary to reuse a previous version of an
application system software product. In this case, it would be necessary to be able to retract version
changes - probably using automated tool library management capabilities. If the automated tools,
versions, and changes have all been controlled through software configuration management
activities, then the chances of recovering a previous software version are good.

4.5 Managing Configuration Management Records

There are many records that must be managed as a part of the software configuration
management process. Some of these records include

(1) Change Requests

(2) Change Request Analysis

(3) Change Authority Decisions on Change Requests

,P .

51

(4)

(5)

(6)

(7)

(8)

Minutes of SCCB Meetings

Status Reports Showing Change Request Status

Version Control Documents

Baselines of the Software Products . ..

Baselines of the Software Support Environment

The management of software configuration management records is important for at least two
reasons. First, the success of software configuration management is dependent upon these records.
Without careful recording and control of these records the status of any software product’s progress
from library to baseline or baseline to baseline is not known. Schedule deadlines for releases can
not be met, and released products have little chance of satisfying customer requirements. Second,
the success of future software updates depends on traceability to current and previous baseline
versions. These records provide that traceability.

Several issues are important to consider in the management of such records. What will be the
record media? Will the records be on-line or off-line? How long will the records be maintained?
In the case where records are updated (e.g., versions of software), how many versions will be
maintained? Where will the record media be maintained? For what use are the records being
maintained (engineering, software quality, customer/legal, badwp/rwOvwY perhaps the @
questions are Can the software be recreated from the maintained records? Can the history of the
software release be retrieved if necessaxy? Can the records be used to improve the software life
cycle prwesses?

There are automated tools that provide assistance in managing all project change requests
(including software-specific changes). These tools allow for input of the information from a change
request form or anatysis form, reports on status information as input to the SCCB, summary status
information across all change requests or stratified by user-specified queries, and tickler files for
critical dates. It is recommended that such tools be used in conjunction with other library
automated tools to provide assistance in the management of software configuration management
records. The following chapter provides guidance on evaluating and using these tools. Since such
tools change frequently, it is also recommended that project personnel contact the Software Quality
Engineering organization for latest guidance on availability of these tools.

52

.

5 Considering Tools

The key point is that automation tools should support SCM and make it easier. They cannot
guarantee its success nor does the lack of such tools ensure its failure. A specific automation 100I

should not be used if it becomes too burdensome or-interferes with the development process for a
project. Therefore, different types of projects may need different types of SCM tools. Refer to
[SSGV5] for a ~cussion of tools used at Sandia.

5.1 Goals for Automation of SCM Functions

The basic goals of SCM are higher quality software development, faster and cheaper software
development, and easier and cheaper maintenance. SCM helps meet these goals in two ways. First,
it keeps track of which software components are used where, when and how they are changed and
the effects of the changes, and which versions are in which stage of release. These actions support
and ease the administrative detail for large software projects. These actions also minimize the
rework and corrections required by uncoordinated changes. Second, it provides the supporl
necessary for reusable software. Unless software items are clearly identified and changes to them
are controlled, reusability is difficult if not impossible.

SCM consists of four distinct functions configuration item identification, change control, status
accounting, and audits and reviews. Automating SCM affects these functions differently. However,
the overall reasons for automating parts of SCM include improved use/access to common data,
improved accuracy of common data, and to relieve people from tedious, boring, and repetitive
operations so they will be available for the more labor-intensive tasks of SCM. For examp!c,
keeping track of software entities and changes can easily be automated and allows people time for
tasks such as audit and review.

Configuration item identification involves selecting or defining a classification schcmc, coding
the software items using the scheme, and loading this information into the SCM systcm.
Developing the classification scheme requires the most effort within this function. Automation can
only help this activity if an SCM tooi is selected that has a built-in classification schcmc. This
would only occur with a tool sp~ifically designed for software configuration management. If a
generic configuration management tool, such as Sherpa Design Management System (DMS), were
selected, then a specific classification scheme for SCM would have to be defined and loaded into
the system. Assigning identification numbers and loading the data into an SCM systcm could bc
tedious if it were done retroactively. In most cases, however, the classification scheme is defined at
the start of the project and identification numbers are assigned and loaded incremental y as new
items are created during the development process. The types of items that must be included in lhc
classification scheme are those identified in Section 5.3 as software entities.

The second SCM function is change control. This function includex generating a change
requesg evaluating the impact of the change request (perhaps in conjunction with other related
change requests), approving the request making the approved changes, and tracking the ncw
versions of the changed items. Most of this function requires human action. Automation cannot

,-’-,

53

help evaluate or approve a change request. The only way automation can help this function is to
keep track of and provide the information needed to support administration of the change control
process.

The status accounting function is the one where automation can dramatically help. Reporting
and analysis become mtich easier if there is an automated tool with a data base to support software
configuration management.

. ..

The audit and review function is the most labor-intensive part of SCM, in some cases requiring
more resources than the other three functions combined. Unfortunately, automated tools can
provide little support for this function beyond tracking its administrative data.

5.2 Framework for Evaluating SCM Tools

Historically, software configuration management tools have usually managed only specifically
defined types of baseline documents or have only managed code modules.

As long as these baseline types of documents were only visible to the developer working on
them, they were not under the SCM tool environment. At some point there was a request to release
them to other project developers andor to users. At this point they came under software
configuration management. SCM was only interested in documents from this point and beyond in
the development process, and then only with a specific, predefine subset of the document types,
not with all types of documents. Much of the work involved manual manipulation of files and
perhaps some in-house software to aid the process.

This approach was developed before CASE tools became widely available. CASE availability
permits a more comprehensive approach to SCM. A CASE tool should support all types of working
documents for the software development and suppcxl process. Some of these documents are crcatcd
and/or used by the SCM CASE tool itself, other CASE tools, or other applications such as word
processing for various documents and manuals.

Without a CASE tool, only the traditional approach to SCM is possible. There are two types of
traditional software configuration management tools — SCM-specific and generic. The key
difference is that an SCM-specific tool, which was developed explicitly for software configuration
management, should already have a predefine standard set of software entities which it manages.
It should also have a predefine standard set of promotiordrelease levels. These predcfincd
concepts should provide a basic level of identification and control to allow an organization or
project to get started with SCM. However, since most organizations have their own variations, even
an SCM-specific tool should allow tailoring. It should be possible to add to, subtract from, or
rename the predefine concepts/documents. At a minimum, the SCM tool should support the
software entities defined in Section 5.3

Before selecting an SCM tool, the organization should have analyzed its requirements,
determined how it wants to do SCM, identified the software entities that must be managed, and
defined the promotionhelease levels. Then the organization can evaluate the specific SCM tools to
see if they can support the specific SCM environment or can be tailored to support it. If available

54

.
SCM tools cannot support the environment, then much of the analysis needed to take the alternate
approach, customizing a generic CM tool, has already been done.

Most of the generic CM tools were developed to do configuration management in a
manufacturing environment. Therefore, they are designed to support a well-understood, long-
stadng approach to configuration management. They are also generic and easily tailorablc
because they must support a wide range of manufacturing industries. For example, Sherpa DMS
allows tailoring to define deliverable/document types, promotion levels, and projects. It can also
associate specific types of documents and promotion levels to specific projects.

In general both an SCM-specific tool and a generic CM tool should provide the same
capabilities. The main difference is in the amount of tailoring required. These capabilities include:

Defining different types of documents

Defining different projects

Defining different promotion levels for different type documents and/or different projects

Relating types of documents to specific projects or types of projects (especially important
because different types of projects - by size and/or discipline - may have different SCM
rules

Defining the Software Configuration Control Board (SCCB) to promote/release documents

Assigning different SCCBS to different projects and/or document types

For smaller projects and those without CASE tools this approach to SCM, managing baseline
documents manually or with either a software-specific or generic CM tool, is appropriate. Even
with larger projects or those using several stand-alone CASE tools, this approach may bc used
initially as part of the learning process.

However, in an integrated CASE environment, SCM should be an integral part of the CASE
tools. A data base should support the CASE tools and allow them to share common design dm.
This data base should also include release status and version information which the various CASE
tools, including SCM, should be able to access and use.

The following is a summmy tool taxonomy for CASE tools supporting SCM:

Level of functionality and integration

(1)

(2)

ToOIS that only support/manage (e.g., control access to and promotion ot)

documentation. (This is especially true of general configuration management tools
adapted to SCM,, Traditional SCM only involves thk level of functionality.)

Stand alone SCM tools designed to support the SCM functions, but not the other CASE
type of functions.

/-%’

55

(3) More general CASE tools which also support the SCM functions. flhe additional
CASE functions supported may be either front-end design tools or back-end code
generation tools.)

Classes of tools by SCM function

(1) Configuration identification and control:
. ..

Version tracking and change control
Library data base
Library scripts

(2) Configuration Status Accounting (CSA):

Standard CSA reports and forms
CSA data base
Report generators

(3) Configuration Audit

Traceability Ma&ix

5.3 Software Entities that Tools Must Control

A Software Configuration Management tool should manage all of the software deliverables and
the entities or objects needed to completely define these deliverables. This section identifies the
types of software deliverables, the software entities and objects, and the relationships among them.
It does this using an information model, created using a Nljssen Information Analysis Model.

Figure 5-1 shows the basic taxonomy of objects that must be managed by configuration
management. A system is composed of one or more subsystems such as mechanical, electrical, and
computer or information systems. These computer or information subsystems have both a hardware
and a software component. The software subsystem has many components which are related to
each other, to their documentation, and to the hardware components on which they run. These
components are identified, related to each other, and tracked by SCM. Software components can be
either application software or system support software. Application software is software that
satisfies a set of end user requirements. Support software includes operating systems,
communications, Data Base Management Systems (DBMSS), and/or utilities.

Both types of software can be further decomposed in terms of both functions (or processes) and
data. On the function side, there are programs, which are composed of modules which may be
further decomposed into additional modules. There are also interfaces between modules. On the
data side, there are information models, data models, and data base schemas (or in non-data base
systems, “file formats”).

Both these function and data objects are real things directly involved in the system development
process. For example, programs, modules, and data base schemas are stored in the computer in

56

source and object form. There are also documents that further describe or explain these objects.
. Tools must manage the various types of objects, their documentation, and how the different versions

of each are related to the others.

System

~~ ~
Mechanical Electrical
Subsystem Subsystem

Information /Computer /
Embedded Computer

Subsystem

//-

Hardware

\
Software

/~\
A @&agrl
~

support
I

/‘\
Process Data bOperating System

Communications

E E EDBMS

Documentation Info Model Utilities

Program Data Model

L

Documentation
DB Schema

Module File Formats

Documentation Documentation

Figure 5-1. Taxonomy of Objects

Figure 5-2 shows the information model that relates the various types of software entities or
objects. At the highest level there is the software library. There are the three distinct types of

libraries dynamic, controlled, and static (or personal, project, and released) which differ primarily
in how changes are controlled as discussed in previous chapters. Each library has an identifier and a

person responsible for it. At the lowest level, a library consists of units which are included in a
library. Each unit is identified by a unit id and a version number. A unit also has a release SMLUS,

an effective date for the status, a person who created it, and a person who is responsible for it

57

(which may be its creator or someone else). A unit has an operating environment, which has both
hardware and software components. There are several subtypes of units. A unit can be either code,
data or documentation. The code or data element can be in either source or object form.

Figure 5-2. Information Model

A unit is included in a component, which in turn is included in a deliverable. One or more
deliverables may be included in a system. If a unit is part of a controlled or static (project or
released) library, then a change request must be generated and approved before it can be changed.
A change request has an identifier, a creator, a date, is related to one or more units, and has a
change review board that must approve it.

58

5;4 Pitfalls

There are many pitfalls in establishing software configuration management in an organization
and in automating it once it has been established. Obviously, the risks are greater going from no
SCM to an automated SCM, than in first going to a manual system, which is later automated.

Some SCM pitfalls occur at the project level, while others occur at the organizational level, i.e.,
across projects.

One pitfall is to create an imbalance of cost to benefit. Sometimes there is a discrepancy in that
one group gets the benefits, while a different group primarily sees the costs. To avoid this, SCM
should not burden the developers more than it benefits them. This maybe difficult to assess early in
the development process since it provides a longer term benefi~ not an immediate benefit for them.

Another problem is matching the level of configuration management to the type of projccl.
Projects can be classified along two dimensions, by size (small, medium, and large) and by how

well they are structured. For well-behaved (i.e., the users know what they want and their
requirements are stable), smalll projects, SCM is of less concern. As project size increases, so ciocs
the benefit of software configuration management as a coordinating and control tool. As the lack of
structure increases so does the benefit of SCM. Because unstructured projects have many changes
during the development process, SCM is essential to coordinate and control these changes. As
project size increases (given the same amount of structure), SCM benefits the developers by cming
their coordination and communications problems. As the amount of structure decreases (given the
same size), SCM benefits communications and coordination between the developers and the users.
Finally, SCM also can provide benefit if the project is working on a common problem or where part
of the software can solve a common problem, because SCM makes it easier to develop and find
reusable code.

SCM for a project should be started when the project is begun because it is very difficull m
retrofit it into an existing project, especially a very large one.

For reusability there is also an issue of granularity (i.e., which software entities to identify,
control, and track). All prcjects within an organization should use a common taxonomy for
software entities, such as the one described in Section 5.3. Small and/or early projects (or manual
ones without automated tools) may only track the higher level entities rather than all of the enlitics
in the taxonomy. However, they should also use the same taxonomy.

In summary, automated tools can provide support for SCM, but they are not the critical factor.
They can reduce the administrative detail and provide easier access to the data, but without the
commitment to do the human activities of SCM, the automated tools will not make the effort a
success.

/--,

59

‘L.”

.-

. ,.

60

Appendix A

References

[BER80]

@ZPO16]

lEP032]

m33]

@P035]

pmwo]

@P043]

WI

@tMS]

p3P054]

BVA83]

@VA87]

[IEE87]

[IEE89]

Bersoff, Edward H., Was D.” Henderson, Stanley G. Siegel, Software
Con.guration Management: An Investment in Product Zntegrity, Prentice Hall
Inc., Englewcti Cliffs, NJ, 1980.

Boehm, Barry W., “A Spiral Model of Development and Enhancement,” ACM
SIGSOFT Software Engineering Notes, Vol. 11, No. 4, Aug 1986, pp. 14-24.

Engineering Procedure, EP401O16, “Identification Marking,” Issue AA.

Engineering Procedure, EP401O32, “Product Change Control: Issue H.

Engineering Procedure, EP401O33, “Revising Drawings and Part Numbers to
Define Product Changes,” Issue P.

Engineering Procedure, EP401O35, “Sandia and Production Agency Acccptancc
Equipment Interfaces,” Issue K.

Engineering Procedure, EP401O4O, “Drawing System,” Issue H.

Engineering Procedure, EP401O43, ‘Acceptance Er@pment Program
Definition” lksue F.

Engineering Procedure, EP401O44, “Engineering Release System,” Issue J.

Engineering, Procedure, EP401O45, “Definition of Computer Software
Configuration Items,” Issue C.

Engineering Procedure, EP401O54, “Nine-Digit Part Number Systcm,” Issue C.

Evans, Michael W., Pamela Piazza, James B. Dolkas, Principles of Productive
Managemeru!,John Wiley& Sons, New York, 1983.

Evans, Michael W., John Marciniak, Sofiware Quality Assurance and
Management, John Wiley & Sons, New York, 1987.

The Institute of Electrical and Electronics Engineers, Inc., IEEE Guide to
Software Configuration Management ANSVIEEE Std 1042-1987.

The Institute of Electrical and Electronics Engineers, Inc., IEEE Standard for
Software Quality Assurance Plans, ANSI/EEE Std 730-1989.

A-1

[IEE90-a]

[IEE90-b]

[IEE91]

[SSGV1]

[SSGV2]

[SSGV3]

[SSGV4]

[SSGV5]

The Institute of Electrical and Electronics Engineers, Inc., IEEE Standard
Glossary of Software Engineering Terminology, ANSI/IEEE Std 610.12-1990.

The Institute of Electrical and Electronics Engineers, Inc., IEEE Standard for
Software Configuration Management Plans, ANSUIEEE Std 828-1990.

The Institute of E1ectrical and Electronics Engineers, Inc., IEEE Software
Engineering Standards, Spring 1991 Edition, 1991.

Sandia Software Guidelines, Volume 1, “Software Qualtiy Planning,” SAND85-
2344, Sandia National Laboratories, Albuquerque, NM, Aug 1987.

Sandia Sof&are Guidelines, Volume 2, “Doeumentation,” SAND8545, Sandia
National Laboratories, Albuquerque, NM, Planned for 1993.

Sandia Software Guidelines, Volume 3, “Standards, Practices, and Conventions,”
SAND85-2346, Sandia National Laboratories, Albuquerque, NM, Jul 1986.

Sandia Software Guidelines, Volume 4, “Configuration Management,” Sandia
National Laboratories, Albuquerque, NM, Jun 1992

Sandia Software Guidelines, Volume 5, “Tools, Techniques, and Methodologies,”
SAND85-2348, Sandia National Laboratories, Albuquerque, NM, Jul 1989.

L-.”

A-2

Appendix B

Glossary and Acronyms

ACO: Advance Change Order

ASCIE American Standard Code for Information In~rchange

Baseline: A baseline is the [documented identification of a software product Configuration Item
(CI) — its code and all its related documentation at some specific point in time. It is the basis for
all Software Configuration Mamgement (SCM) activities.

CASE Computer-Aided Sofbware Engineering

CCB: Configuration Control Board. A CCB is a group of people responsible for evaluating, and
approving or disapproving proposed changes to configuration items, and for ensuring
implementation of approved changes. A CCB is sometimes referred to as a Change Control Board.

CER: Complete Engineering Release

Ck Configuration Item. A collection of (software) entities (or components) treated as a single
element for the purpose of configuration management. Configuration Items can vary in size,
complexity, and type. A CI may also be called a Computer Software Configuration Item (CSCI),
Computer Program CI (CPCI), or (software) system segment.

CM: Configuration Management

CMP: Code Maintenance Plan

CPC: Computer Program Component, same as Computer Software Component (CSC)

CPCfi Computer program Configuration Item, same as Computer Software Configuration Itcrn
(CSCI)

CSA: Configuration Status Accounting

CSC: Computer Software Component, A distinct part of a software Configuration Itcm (CI). A
software component may also be called a Computer Software Component (CSC) or Computer
program Component (CPC). CSCS may also be further decomposed into other CSCS or individual
units. If a large analysis progyam is called out as a CI, some of the CSCS could be a requirements
document or major groupings of the software modules.

CSCL Computer Software Configuration Item

CSF Common File System

B-1

DBMS: Data Base Management System

DIR: Defect Investigation Report

DMS: Design Management System

EER Engineering Evaluation Release

EP: Engineering Procedure

FCA: Functional Configuration Audit

FCO: Final Change Order

IWE: Full-Time Equivalent

HOL: Higher Order Language

IEEE: Institute of Electrical and Electronics Engineers

IFS: Integrated Files Store

NSS: Network Storage Service

LAN: Local Area Network

. ..

ML: Materials List

OTS: Off-the-Shelf

PCA: Physical Configuration Audit

Personal Library: The Personal Library (also termed the dynamic or programmer’s library) is used
for holding newly created or modified software entities. This library constitutes a software
developer’s workspace for writing new code or documentation, and may take any form suitable to
the developer’s needs, but should have a degree of order to it that allows the status of its entities to
be determined easily. Each software developer may have a Personal Library from which project
entities can be linked and/or copied Alternately, each small team may have a Personal Library
assigned to the team with lower level personal libraries assigned to each individual, especially in a
Local Area Network (LAN) or mainframe environment. Access to the Personal Library is
controlled by, and usually limited to, the software developer.

Project Library: The Project Library (also termed the controlled or “master” library) is a library
used for managing the ci.urent inted developmental baselines and for controlling changes made to
them. This library represents the latest internally-approved version of the software product being
developed. Changes to software entities in the Project Library should have gone through formal
approval procedures established in a configuration management plan. Code in this library should

L’

B-2

‘L+’

,

have been tested sufficiently to ensure that it is ready for integration. Copies may be freely made
for use by the software developers and others, but changes must be strictly controlled and
documented in order to ascertain at arty given point its exact configuration. Even for simple
projects in which there is only one code developer, there still should be functional separation
between the Personal Library amdthe Project Library.

PROM: Programmable Read-Only Memory

Promotion: A promotion is an action taken with a software component to increase the level of
authority needed to approve clhanges to it. For example, a top-level software design description is
promoted or moved into the Project Library where all developers can view, but not modify it
without proper authority. This allows the developers to work on issues that may concern detailed
designs and implementation.

QA: Quality Assurance

QE Qualification Evaluation

QER: Qualification Evacuation Release

RAN Restricted Access Network

Release: A release is a copy of the software CI or CSC that is turned over to the customer or user.
It is a promotion of that CI or CSC outside of the development organization.

Release Library: The Relea.w Library (also termed the static or “software repository” library) is a
library used to archive the various baselines (versions) released for general use. This library is
never changed (except to add a new version), since it must be able to duplicate results from software
that has been released for operational use by other organizations. Access should be limited to “read
only” for the purpose of making copies. The Sandia Drawing System provides a Release Library
capability required for War Reserve (WR) projects and is useful for most other projects involving
formal software deliverables.

Revision: A revision is a formal change to a software CI or CSC that does not alter its documented
functional or performance capabilities. An example of this is when code is changed 10 correct a
fault.

SCCB: Software Configuration Control Board. A Software Configuration Control Board is a group
of individuals who oversee the software change process, with ultimate authority for approving a
change and promoting a software entity from one library to another. The individuals may bc from
the project, related organizations and management levels, the customer, or some combination.
During the development process, the SCCB controls promotions into the Project Library from the
Personal Library and changes to the products in the Project Library. During the support phase, the
project CCB and SCCB provide the authority to make changes to products already promoted 10 lhc
Release Library, and to promote software products from the Project Library to the Release Library.
An SCCB may also be referred to as a Software Change Control Board.

B-3

SCM: Software Configuration Management

SCMP: Software Configuration Management Plan

SCR: Software Change Request

SDD: Software Design Description

.

. ..

SDP Software Development Plan

SLOC: Source Lines of Code

SNL: Sandia National Laboratories

SPMP: Software Project Management Plan

SQA: Software Quality Assurance

SQAI% Software Quality Assurance Plan

SQP: Software Quality Plan

SRS: Software Requirements Specification

L-

Version: A version is a software CI or CSC with a defined set of capabilities. A new version is a
variation of the previous version in that it has a change in its functionality or performance
characteristics. An example of this is a change to the software to generate a different output.

WR: War Reserve

B-4

‘.-J’

NOOO ORGANIZATIONAL SCMP Issue A, 1O-JAN-92

f--

Appendix C
.

Organizational SCMP Thematic

Noti Italics type is instructional information that should be deleted when a section is filled in with
the necessary information for the project. Times Roman text can be revised as necessary and
beeome part of the final document.

1. INTRODUCTION

1.1 Purpose

The purpose of this
organization, activities,

plan is to describe the software configuration management policies,
and relationships within the Sandia National Laboratories (SNL)

Component Development Vice Presidency (NOOO). All War Reserve (lJR) and WR-like software
developed within the directorates and divisions of N(K)Oshall* implement software configuration
management in accordance with this plan. This plan will provide a foundation for application of
consistent software configuration management practices across projects critical to the SNL mission.

1.2 scope

This plan shall apply to WR and WR-lie software developed by any projects within the
Component Development Vice Presidency (NO(K)). The management and organizational
relationships are included in this plan along with guidance for development of specific project
software configuration management plans that will be consistent with this general organizational
plan. The applicable policies and procedures to be applied to project software configuration
management are described. It is recommended that projects involving non-WR software develop a
project-specific configuration :management plan in accordance with this general organizational plan.

1.3 Definitions and Acronyms

ANSI - American National Standards Institute
AR - Automatic Reserve
CCB - Configuration Control Board
D@ - Department of Defense
EP - Engineering I%ocedure
IAW - In accordance with
IEEE - Institute of Ehxtrical and Electronics Engineers
SCM - Software Configuration Management
SCMP- Sofhvare Configuration Management Plan
SNL - Sandia National Laboratories
SQAP - Software QuallityAssurance Plan
SSG - Sandia Software Guidelines

* Nate that the~ of a planare indicated by the use of “shall” and sonwtimes “will.” Options are idetilied @
“shouki” or other less directivewor&.

c-1

NOOO ORGANIZATIONAL SCMP Issue A, 1O-JAN-92

1.4

STD - Standard
- War Reserve

References.

[1]
[2]
[3]

[4]

[5]
[6]
[7]

[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

Sandia National Laboratories Quality Plan
Sandia Software Guidelines, Vols 1,2,3,4,5
SNL Software Development Policy and Recomnwnded.Software Development Practices,
L. D. Bertholf memomndum, November 19,1990
ANSI/IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology
ANSI/IEEE Std 828-1990, IEEE Standard for Software Configuration Management Plans
ANSI/iEEE Std 1042-1987, IEEE Guide to Software Configuration Management
DOD-STD-2167A, Military Standard, Defense System Software Development, Chapter
4.5, Software Configuration Management
EP401O16, “Identification Marking”
EP401O32, “Product Change Control”
EP401O33, “Revising Drawings and Part Numbers to Define Product Changes”
EP401O35, “Sandia and Production Agency Acceptance Equipment Interfaces”
EP401O4O,“Drawing System”
EP401O43, “Acceptance Equipment Program Definition”
EP401O44, “Engineering Release System.”
EP401O45, “Definition of Computer Software Configuration Items”
EP401O54, “Nine-Digit Part Number System”

2. SCM MANAGEMENT

2.1 Organization

2.1.1 Policy

Each project involving WR or WR-like soflware shall develop a Software Configuration
Management Plan (SCMP) in accordance with the Sandia Software Guidelines (SSG, reference [2])
and this organizational plan. Change control will be the responsibility of the individual project as
described in the SCMP. The development and support change responsibilities will be defined in the
SCMP. The SCMP software configuration review board will provide status to the general
organization software configuration control board as described in subsection 3.3 of this plan. The
software product will be controlled in accordance with EP401O45 and its related Engineering
Procedures.

Note that the Organizational SCMP could be a part of an Organizational Software Quality
Assurance Plan, Likewise, the Project-Specific SCMP might be a part of a Project-Specific SQAP.
These options should be part of the policy statement as appropriate.

\.)

c-2

2.1.2 Organization and Relationships

NOOO ORGANIZATIONAL SCMP Issue A, 1O-JAN-92

Include organization chart of VP IWOOwith its key departments and auxiliary interfaces with other
VP organizational entities such as systems engineering, quality assurance, and drawing system.

Indicate the functional roles of systems engineering, component engineering, software
&velopmentlsupport, and quality assurance.

Describe the general organizational relatwnship to the project specific configuration management
organuatwn, specifically via the control board inte~ace with the software configuration review
board.

2.2 SCM Responsibilities

2.2.1 General VP NOOOSCM IResponsibilities

Indicate the responsibilities of the Organizatwnal SCCB. Membership might include Directors,
Supervisors, and Software Project Leaders. Perhaps a representative j?om Sojhvare Qualily and
Reliability Engineering could be a member to provide general SNL software guidance and some
level of independence. Note that the software fwctions of the Organizational SCCB might be a part
of a more general Organizatwnal CCB that considers the overall system configuration issues for
systems designedlakveloped by VP NOOOpersonnel.

Indicate the nuijor jimctions, inte~aces, inputsloutputs of the SCCB. Primary functions are major
project release deciswns and major project rework decisions. Interfaces include customer and
internal VP directorate I division I project. Inputs are release packages and accompanying analysis
data; outputs are decisions (release, rework, kill).

Indicate that the Organizatwnal SCM Library will be the Sandia Drawing Syslem as dejined in
References [8] - [16]. Indic(zte that the Project-Specijic Librarian will release projecl software
products to theSandia Drawing System through the Project-Specijic SCCB afier concurrence by the
Organizational SCCB.

Organizatwnal &zta bases reference information in project-specljic &ta bases as well as summary
information across all projects.

2.2.2 Project-Specific SCM Responsibilities

Indicate the SCM responsibilities of the project and the relatwnship to the Organizational SCCB.
Include a figure. Responsibilities should include Project-Specijic Software Librarian and Project-
Specijic SCCB. Depending upon the project size, the Project SCCB composition could vary
considerably.

Major responsibilities are to communicate jkl project release pachmge 10 the Organizational
SCCB, and respond to requests for project release rework Responses to questions of possible
sojiware project adaptation (e.g., reuse) for new questions would be processed through lhe
Organizatwnal SCCB to the Froject-Speci~c SCCB.

c-3

NOOO ORGANIZATIONAL SCMP Issue A, 1O-JAN-92

‘u

Other Project-Specijic SCM responsibilities are described in the IEEE Standard and Guidelines
(references [5] and [6]). This Organizatwnal SCMP should require adherence to the Sandia
Drawing System configuration i&ntijication and control procedures as described in the
Engineering Procedures, in particular EP401O45.

2.3 Applicable Policies,’ Directives, and Procedures

Reference the SNL So@are Quality Plan, VP2000 Sojlware Development Policies, SSGS, and EPs.
Describe briejly the significance of why each referenced document applies to this organization.

3. SCM Activities

3.1 Identification

Project-specific SCMPS shall define the implementation of EP401O45 for the project along with
any lower level identification details. Identification of developmental baselines and product
baseline updates will be described at the lower level.

EP401O45 &fines the general identi>cation scheme.

Typical baselines will include the finctional, allocated, and product.

Software product elements to be identified shall include

(1) application software products
(2) system support and utility software
(3) maintenance and test software
(4) equipment required for development/test/support

3.2 Control.

Processing of changes will generaliy be handled in accordance with the Project-Specific SCMP.
Changes that might affect multiple software products and/or weapons systems will be coordinated
through the Organizational SCCB.

Two-tiered level of change authority control. Organizatwnal SCCB supported by Project-Specific
SCCBS. Indicate the authority relationships, control~ow, and associated information flow.

Support software, vendor-provided software, and any other software required to develop/support
the primay software products will be controlled in accordance with (IAW) the Project-Specific
SCMP.

3.3 Status Accounting

Status of initial versions and updates to functional, allocated, or product baselines will be
reported to the Organizational SCCB through the Project-Specific SCCBS. Status of released
products will be available through the Sandia Drawing System.

C’4

NOOOORGANIZATIONAL SCMP Issue A, 1O-JAN-92

A standard data base of configuration status and changes for all software projects will be
. supported. Each Project-Specific SCMP shall support report inputs to this database for changes and

status.

3.4 Audits and Reviews

The Organizational SCCB will review each project’s SCMP, status of controlled baselines IAW
that project’s SCMP, and issues brought to the attention of the SCCB by individual SCMPS. The
Organizational SCCB will meet at least twice a year to review all software projects to ensure
compliance with this plan.

3.5 Int.ezfaceControl

Indicate the general inte~ace of the Organizatwnal SCM to overall system configuration
management and the relationships to other functional organizational elements such as systems
engineering, sojiware &velopment, sojiware support, and quality assurance. The theme should be
an integrated jiutction along the lines of Appendix D SCMP in IEEE Std 1042-1987 (reference [6]).

3.6 Subcontractor/Vendor Control

Any subcontractor software shall be controlled IAW the subcontractor’s SCMP. The
subcontractor’s concept will be described in the Project-Specific SCMP, and shall be consistent with
t.hk Organizational SCMP, the Project-Specific SCMP, and the SSG. The subcontractor’s SCMP
shall be reviewed by the project personnel.

Any vendor-supplied software will be described in the Project-Specific SCMP.

Control of upalztes to this sojlware, response to so~are problems, and issues such as availability of
the sojiware if the vendor business status changes (i.e., absorbed by another company, goes out of
business).

4. Schedules

4.1 Organizational SCM Plan Implementation

Indicate THIS plan’s implementation considerations. In particular, THIS plan is implemented by the
creation of the Organizatwnal SCCB function and Project-Specific SCMPS in accordance with
THIS plan.

Indicate the intent to allow projects to tailor Project-Specific SCMPS to the appropriate level of
&tail per the project neea!r. The Organizational SCCB will review and approve the project-specific
plans.

/.-

C-5
,.

.

NOOO ORGANIZATIONAL SCMP Issue A, 1O-JAN-92

5. Resources

5.1 Data

“The Organizational SCCB will use a standard data
controlled software product baselines. This data base will

base for tracking status and changes to
be IAW the Sandia Drawing System.

An internal data base will provide the mechanism for collecting and retaining records for all
projects that pertain to SCCB activity, status, release reports, change requests, and any metrics that
indicate configuration management process improvement.

Lower-1evel records collection and retention necessary for software development and support
will be documented in the Project-Specific SCMP.

5.2 Tools, Techniques, and Methodologies

Project-Specific SCMPS will describe specific tools, techniques, and methodologies to be
applied to the project software IAW the SSGS. It is the goal to standardize software configuration
management tools, techniques, and methodologies as much as is practical across software projects.

Typical classes of tools required include project library management system, code management
system, systemslsofware change request tracking system, software change authorization system, and
status accounting report generation system.

The project library management system provides the capability to organize the project
developmentlsupport environment into software libraries. Personal, project, and release libraries
are separated and controlled. Access to the libraries is controlled, and the personnel’s interJace to
the developmentlsupport environment is dejined.

The code management system provides context-sensitive editors, software source version control,
software load build capabilities, and compatibility between source and object versions.

The change request tracking system maintains information on each change request and the status of
each change request.

The sof~are change authorization ~stem provides the capability to link authorization information
with each change request and releases of sojlware products.

The status accounting report generation system provi&s reports summarizing the status (accepted,
deferred, rejected) of all changes requests, current baseline &veloprnent/update status, and
schedule data for fiture activities.

Each Project-Specific SCMP will describe the use of software libraries for the evolution of
baselines for development and support. Personal, project, and release libraries will be supported.
Their use for each project will be described in the Project-Specific SCMP.

.-

L“

C-6

NOOOORGANtiATIONAL SCMP Issue A, 1O-JAN-92

5.3 Personnel
.

Identify personnel requirements to support configuration rnanagementjimctions at the VP level.

5.4 Training

I&ntifj any initial and recurrent training required for personnel to jknction in software
configurationmanagementpositions or to utilize any of the identified tools used to control software
products.

6. Plan Maintenance

Ownership of this organizational SCMP resides in the NNOODirectorate’s Quality Coordinator
for Software Development. It is reviewed at least annually for update consideration. Suggestions
and comments should be directed to the Quality Coordinator for Software Developmen~ NNOO.

Changes to this plan are reviewed and approved by the NOOOSCCB.

7-’.

c-7

NOOO ORGANIZATIONAL SCMP Issue A, 1O-JAN-92

\ -../

C-8

n

Appendix D
* Sample Project Software Configuration Management Plan:

Small to Medium Weapons Application
>

Software Configuration Management Plan

for the

MCOOO1

FBI 12 Launch Controller

February 8,1997

Prepared by: / /97

Reviewed by: / /97

Approved by: / /97

II 97

/ /97

O.K. Kanagal,5184

E. T. Summer, 0326

M. A. Baca, 0326

X. 1.Ting, 5184

P. D. Quick, 2368

U. C. Taylor, 2317

Sandia National Laboratories

Albuquerque, NM 87185

D-1

MCOOO1SCMP -2- Issue B, 8-FEB-97

‘.-”

1. Introduction

1.1 System Overview. The MCOOO1Launch Controller is being designed for the FB 112 Single
Stage to Orbit Aerospace Vehicle. The MCOOO1is being designed to be compatible with the W 144
Photon Torpedo and W 126 Particle Beam Generators, as well as conventional nuclear devices that
the FBl 12 is capable of ‘carrying. The MCOOO1employs two microcontrollers containing 4K bytes
each of Programmable Read-Only Memory (PROM) and one microprocessor containing 8K bytes of
PROM. The two microcontrollers are utilized in the. interface control subsystem and the
microprocessor is utilized in the launch processing and monitoring subsystem. The interface control
software is being designed to be implemented on Sandia SA348X microcontrollers, the functional
equivalent of the INTEL 80C532 microcontroller. The software for launch processing and
monitoring is being designed to be implemented on a Sandia SA352X, the functional equivalent of
the INTEL 80786 microprocessor. The software is being developed on SUN Workstations operating
in a Local Area Network (LAN). The software is being written in C.

1.2 Purpose. This software configuration management plan (SCMP) specifies the requirements
and procedures necessary for the configuration management activities of the MCOOO1project. It
defines the methods to be used for identifying software entities, implementing and controlling
changes, and recording and reporting the implementation status of software configuration items
(CIS).

L3 Scope. The organizations involved in this projeet are identified in Figure 1. This plan applies
to all phases of the software development life cycle includlng postdeployment support if necessary.

I MCOOO1Software Projeet Organization

MCOOO1Projeet Manager (5184)

-t-

Safety Assessment
Software Quality and

(0332)
eliabilityEngineering

(0326)

I I i

Interface Control Software Launch Control and
(2317) MonitoringSoftware

(2368)b

F@re 1

This plan applies to all software and associated documentation used in the production of computer
programs produccxt for the MCOOO1project. It includes the software development activities that
support the iteration of prototype builds of the MCOOO1hardware. Software CIS controlled by this
plan include

MCOOO1Beam Weapon Interface Program
MCOOO1Nuclear Weapon Interface Program
MCOOO1Launch Control and Monitoring Program

D-2

MCOOO1SCMP -3- Issue B, 8-FEB-97

MCOOO1Diagnostic and Test Software
* MCOOO1Emulation Program

1.4 Definitions and Acronyms. The definitions, used in this plan conform to Sandia Software
. Guidelines (SSGS), Volumes 1, 3, and 4. Other definitions will conform to those found in

ANSVD5EE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology.
Unique definitions used in this plan include

Interface Control. The process of (1) identifying all functional and physical characteristics
relevant to the interfacing of two or more CIS provided by one or more organizations, and (2)
ensuring that proposed changes to these characteristics are evaluated and approved prior to
implementation.

The following acronyms are referred to within the text of this plan

AFsc
CASE
CCB
SR
CD
CI
CM
LAN
NSA
PROM
QE
SCM
SCMP
SPACECOM
SQE
UART
USAF

References. The documents
revisions apply):

Air Force Systems Command
Computer-Aided Software Engineering
Configuration Control Board
Software Requirements Drawing
System Compatibility Drawing
Configuration Item
Configuration Management
Local Area Network
National Security Agency
Programmable Read Only Memory
Qualification Evaluation
Software Configuration Management
Software Configuration Management Plan
Space Command
Software Quality Engineer
Universal Asynchronous Receiver/I’ransmitter
United States Air Force

listed here will be considered when applying this plan (Iatcst

[1] Sandia National Laboratories Quality Plan

[2] Sandia Sojhvare Guidelines, VO1 L “Softwwe QUW PIann@”; VO1 2!
“Documentation”; Vol 3, “Standards, Practices, and Conventions”; and Vol 4,
“Software Configuration Management”

[3] ANSUIEEE Std 610.12-1990, “IEEE Standard Glossary of Software Engineering
Terminology”

[4] ANSVIEEE Std 828-1990, “IEEE Standard for Software Configuration Management
Plans”

D-3

MCOOO1SCMP -4- Issue B, 8-FEB-97

[5]

[6]

[7]

[8]

[9]

[10]

ANSI/IEEE Std 1042-1987, “IEEE Guide to Software Configuration Management”

NSA Software Product Standards Manual, Chapter 2.3, Software Configuration
Management

DOD-STD-2167A, Military Standard, Defense System Software Development,
Chapter 4.5, Software Configuration Management

Statement of Work, FBl 12 Launch Contro~er, Order No. 6Y450-96, USAF/AFSC,
Wright Patterson AFB, OH, April 1,1996

Sandia/Rockwell ISR HD4901, Interface Control - Avionics to Launch Controller -
Programming and TimingfElectrical

SR999996, Interface Control Document for the MCOOO1Launch Controller, Issue B

2. Software Configuration Management

2.1 Organization. Special Systems Development (5184) has overall responsibility for the MCOOO1
development project. The authority for software configuration management (SCM) and
implementing the SCMP is assigned to Digital Subsystem Software 11 (2317) for the Interface
Control Software and to Advanced Firing Set II (2368) for the Launch Control and Monitoring
Software, the Diagnostic and Test Software, and the Emulation Program. Organizations 2317 and
2368 will each appoint an SCM coordinator for their respective software responsibilities. The SCM
coordinators will co-chair the MCOOO1configuration control board (CCB). Organization 5184 and
Software Quality and Reliability Engineering (0344) will each assist in the management of the
SCMP and provide representation to the MCOOO1CCB. Safety Assessment Technologies (0332)
will also provide representation to the MCOOO1CCB. Hereafter, the MCOOO1CCB will be referred
to as the CCB.

2.2 SCM Responsibilities. Organizations 2317 and 2368 responsibilities for their respective
development assignments include configuration identification, configuration control, status
accounting, co-chairing the CCB, establishment and maintenance of developmental baselines, and
participating in reviews and inspections. Organization 5184 responsibilities include liaison with
USAF/AFSC, USAF/SPACECOM, and Rockwell International; systems integration; and providing
representation to the CCB. Organization 0344 is responsible for maintenance of the SCMP,
chairing formal reviews and audits, consulting with Organizations 2317,2368, and 5184 on software
Quality Assurance (SQA) matters, and providing representation to the CCB.

2.2.1 Configuration Identification. Configuration identification is applied to all MCOOO1
software entities, both code and associated documentation. Each softwwe entity created for the
MCOOO1will be assigned a configuration identification alphanumeric before it is begun. Software
entities that are source code modules will be combined into a single configuration item (CI) for each
major function when baselined and promoted to the ~oject Library. This will also be the CI that is
released to the drawing system (Release Library). Documents are established as CIS after they are
basdined.

D-4

MCOOO1SCMP -5- Issue B, 8-FEB-97

2.2.1.1 Baselines. Baselines are established for the control of requirements, design, and product
changes and are time phased to the development of the MCOOO1. Baselines are established by the
organizations responsible for their respective CIS at the completion of formal inspections and
approval of those inspections by the MCOOO1qualification evaluation (QE) team. Baselines defined
for the MCOOO1include

[1]

[2]

[3]

2.2.1.2

Functional baseline. In addition to the above, the functional baseline is established by
customer approval of the MCOOO1system mxydrements or system compatibility drawing
(CD drawing).

Allocated baseline. The allocated baseline is established when the software requirements
specification (SR drawing) has been inspected and approved as described above.

Product baseline. The product baseline is established when the source code has been
inspected and approved as described above and released into the Sandia drawing system.

Libraries. Thrcxmhout the development cycle, ~ch Softwme entity is Dromot~ @ higher
levels of control as its exis~nce becomes in~reasingly defined. Libraries fall int~ three categori~s

[1] Personal Library. Maintained by tie designer/programmer in password write-protected
files.

[2] Project Library. Maintained by the designated configuration manager in password write-
protected files.

[3] Release Library. Maintained in the drawing system.

2.2.2 Configuration Control. All software entities are maintained by the controlling authorily for
the respective librmy in which the entity resides. For entities in the Personal Library, the

designer/programmer has indlvidttal responsibility to control changes. Inspected and baselincd
entities in the Project Library are changed via the Software Change Request (SCR) system by a
designated designer/programmer with the approval of the CCB. In addition to the SCR, changes to
CIS in the Release Library require an Advance Change Order (ACO) or Final Change Order (FCO)
issued by the CCB or the caretaker configuration manager if the project has been completed and
closed out. Note that initial release (or promotion) to the drawing system (Release Library) requires
a Complete Engineering Release (CER) to be issued against the respective CIS. Baselined
documentation and software entities will be managed and accounted for with Amplify Control, a
commercially available computer aided software engineering CASE tool operating on the Sun
workstation.

2.2.3 Status Accounting and Audits. Reports on the status of software or documentation in
personal libraries or the project library may be generated at any time using the CASE tool. Audits
will be performed at the request of the USAF through the project manager.

2.2.4 Configuration Control Board. The makeup of the CCB is described in 2.1 above. The CCB
will meet as required to review change requests to software or documentation in the project or
release libraries. The CCB will issue one of the following decisions: approved, ,disapproved, or

f--

D-5

MCOOO1SCMP -6- Issue B, 8-FEB-97

tabled. Tabled requests will create an action item to resolve the issue(s) causing a tabled decision
and set a date to reconsider that item.

2.3 Applicable Policies, Dhectivesj and Procedures. In addition to this SCMP the following
documents apply for the life of this projecc

Ref. [2]. Sandia Sofiare Guidelines, Vol 3, “Standards, Practices, rmd Conventions”

Ref. [6]. NSA Software Products Standards Manual, Chapter 2.3

Ref. [8]. Statement of Work, FBI 12 Launch Controller

3. SCM Activities

3.1 Configuration Identification. A six-digit part number from the Sandia drawing system with
prefixes selected from Table 1 and a threedigit correlation suffix shall be used to identify each CI.
A software CI includes requirements specifications, design and test documentation, and compiled
source and object (or machine executable) code. Configuration identification of computer programs
and documentation during the development effort consists of established baselines and libraries that
are time phased to the development schedule of the MCOOO1. Until a software CI is promoted to the
Release Library, it will be identified as Issue O as it remains in the Personal or Project Library.
Once in the Release library, the CI will be established as Issue A and subsequent changes to a
baseline will be identified as Issue B, C, etc. Also, a page change table will be in the beginning of
each baselined document. Significant changes to any CI will be denoted by incrementing the
correlation suffix, resulting in a different version of that CI. Modules (subroutines) will begin
maintaining a revision history using a “dot” and two digit notation (e.g., .01, .02) added to the
module nomenclature as they are established in the Personal Library.

3.2 Configuration Control. Software documentation as well as software modules maintained at
the Personal and Project Library level will be physically controlled using Amplify Control.
Software modules and documentation in the Personal Librag will be change controlled by the
responsible developer. Modules and documentation in the Project Library will be change controlled
by the CCB. All software entities released to the drawing system (Release Library) can only be
changed by ACO/FCO action after approval by the CCB.

3.2.1 Function of the Configuration Control Board. The CCB acts as the governing authority to
ensure that proposed changes to formally identified CIS and any composite entities comply with
approved specifications and designs, and. it evaluates the impact of those proposed changes on
existing software. After the code has been inspected and promoted to the Project Library, the CCB
may delegate this authority to a subboard consisting of two or more CCB members for change
requests involving coding during integration and system testing. In this case, the CCB will review
the changes prior to promoting the source and object code to the Release Library and retain the
authority to veto any change.

D-6

MCOOO1SCMP -7- Issue B, 8-FEB-97

Table 1.

Configuration Identification Prefmes

SR Software Requirements Specification

SD Software Design Description

GD Software Design Description (Graphical)

PD Software Program Description (Compiled Source Code Listing)

Magnetic Media containing Source Code and any other code (compiler,
assemblerflinker or make files) required to construct the binary object
(machine executable) code

TK Software Test Plan, Test Cases and Test Results

AT Magnetic Meda containing Object (machine executable) Code and orher
files reouired to insert the rxomarn into PROMS

3.2.2 Software Change Request/Change Authorization. An SCR will be used to track all

changes to software code and documentation that reside in the Project or Release Libraries
(baseIined software). The SCR form (Attachment 1) will contain a narrative description of the
change or problem, information to identify the source of the repo% and some basic information to
aid in evaluating the report. It will be submitted to the appropriate SCM authority, depending on
which software program it pertains to, and will be sequentially numbered using an automatic
tracking system. Anyone associated with the MCOOO1project may submit an SCR, but usually an
SCR is submitted by a member of the development team. SCRS will be evaluated by the CCB (or
CCB subboard) and approved or disapproved for implementation. An SCR is closed when (1)
Integration testing has shown that the changes have been correctly made, (2) No unexpected side
effects have resulted from the change, and (3) Documentation has been updated and reviewed.

33 Configuration Status Accounting. Amplify Control provides an on-line inquiry capability and
user-specified report generation. Amplify Control will also provide a version description document
and software configuration tree. These can be generated on demand, but will be produced quarterly
and retained by the CCB. The SCR tracking software is capable of generating reports on the stares
of SCR as well as the entire SCR data base. Status reports will be produced monthly and retained
by the CCB.

3.4 Audits and Reviews. No audits are scheduled for MCOOO1software. However all software
entities are inspected or reviewed by the QE team prior to their release to the drawing systcm
(Release Library). Details of these inspections and reviews are documented along with other
qualification activities in the Engineering Evaluation Releases (EERs) and Qualification Evaluation
Releases (QERs) for the MCOOO1,

D-7

MCOOO1SCMP -8- Issue B, 8-FEB-97

All product definition drawings including test planning and test results produced for the MCOOO1is
retained and safeguarded in the Sandia Drawing System. Copies of SCM status reports, CCB
activities, and SCR will be maintained in Organization2317 in an MCOOO1project file for a period
of one year after the completion of the MCOOOI.

3.5 Interface Control. Organization 2317 is responsible for interface control between the SA348X
microcontrollers and the SA352X microprocessor. Organization 5184 is responsible for the MCOOOl
external interface with the FB 112. Note Hardware/s@ware.. interface control is documented
explicitly in the INTEL Microcontroller and Microprocessor Handbooks.

3.6 Supplier Control. Vendor-supplied software consists of compilers, emulators, and CASE
tools. Although good business practice SCM is expected and notification of new version releases
are provided, no review of vendor SCM planning is performed.

4. Schedules

SCMP hplemenbtion. This SCMP is implemented as soon as it is approved by the cover page
signatories. No baselines may be established prior to implementation of this SCMP. The CCB is
established at the time of SCMP approval. Baselines are described in 2.2.1.1 above.

5. Resources

5.1 Tools, Techniques, and Methodologies. The primary tool for physical control of software in
personal and project libraries is Amplify Control, an automated configuration management tool that
provides source. code control, structure charts, documentation preparation, password control, and
other configuration management functions. The engineering release system is used to control all
changes to CIS in the Release Library (drawing system). The SCR is the primary technique to
identify, track, and manage changes to software in the Project and Release Libraries. The SCR
system is a combination of automated identification and tracking of software changes, and the
human process of evaluating and approving or disapproving those changes.

5.2 Personnel and Training. All personnel working associated with the development of the
MCOOOIhave or will complete INTEC course CS842, Software Configuration Management. No
additional training is required for developers to utilize Amplify Control.

6. Mm Maintenance

L.>

This plan is owned by Organization 2317. It is reviewed semiannually by the MCOOO1CCB.
Suggestions or comments should be sent to MCOOO1SCM coordinator, 2317. All changes to this
plan shall be approved by the MCOOO1CCB.

D-8

MCOOO1SCMP -9- Issue B, 8-FEB-97

Attachment 1

> Software Change Request

SCR Numbe~

,

1. Submitted by Date; I I

2. Software Program/Dwument N~~

Configuration Ident.ificatio@ti Numbe~

Revision/Issuty

3. SCR Type [] (1 - Development 2- Problem 3- Enhancement)

4. Short Task Description

5. Detailed Description:

.

6. Submitter’s Priority [1
(l-Critical 2- Very Important 3- Important 4- I.nconvenimt5- Interesting)

7. CCB Action; CCB Priority []

8. Assigned to Suspense Date; I I

9. Solution Comments:

10. Software Programs Affected

11. SCM /@xOVZk Date; I I

12. Closed by; Datq I I

D-9

D-10

MELCOR SCM Plan -1- October 4, 1990

APPENDIX E
Sample Project Software Configuration Management Plan:

Large, Non-Weapons Research Application

MEL(2OR Software Configuration Management Plan

October 4,1990

Randall M. Summers
Thermal/Hydraulic Analysis

Division 6418
Sandia National Laboratories

Albuquerque, NM 87185

Contributions by
Randall K. Cole, Jr.
Stephen W. Webb

1. INTRODUCTION

1.1 Purpose

The MELCOR Software Configuration Management (SCM) Plan describes the environment and
procedures for development and maintenance of the MELCOR Code System (hereafter usually
referred to as simply “MELCOR”). It is intended that this plan conform to requirements laid out in
ANSUIEEE Std 828-1983, “IEEE Standard for Software Configuration Management Plans,” as well
as the Quality Assurance Program Plan for the Reactor Systems Safety Department6410 at Sandia
National Laboratories.

1.2 scope

For the purpose of this SCM Plan, MELCOR includes all program libraries, FORTRAN source
code, object libraries, executable, and documentation for the MELGEN, MELCOR, and MELPLT
programs, which comprise the MELCOR code system. MELCOR contains a very large number of
subroutines (well over a thousand), which are grouped into ~ according to the phenomena
they model or the function they perform. Compilable FORTRAN source amounts to over a quarter
million lines of code. Documentation is subdivided into individual Users’ Guides, Reference
Manuals, and Programmers’ Guides for each MELCOR package. MELCOR is developed and
maintained principally on a VAX 8700 computer running the VAX/VMS operating system; methods
and procedures for MELCOR SCM are determined in part by this computing environment.
Approximately 200,000 512-byte VAX blocks are required for configuration management of
MELCOR.

/’--’

E-1
,.

MELCOR SCM Plan -2- October 4, 1990
-.----------------- .------------- .--------------------- e---

The primary configuration items for MELCOR are the proms m libraries , which are created and
modified for each of the various MELCOR packages by a Sandia-developed software product called
Code Maintenance Package, or CMP. (CMP is a set of portable FORTRAN programs and is
generally compatible with Historian and Cray UPDATE, although there are some differences. Use
of CMP for MELCOR configuration management is described in Section 4, Tools, Techniques, and
Methodologies.) The program libraries generated by CMP are composed of named DECKS and
COMDECKS, each containing numbered lines for the various MELCOR subprograms and common
blocks, respectively, and grouped according to MELCOR package.. Modifications to the program
libraries are made in the form of IDENTs, which thereafter become a part of the program libraries
and give a complete history of changes to these libraries.

FORTRAN source code for a particular computer or operating environment is generated from the
MELCOR program libraries by CMP, and source routines are thus secondary, derived configuration
items. Likewise, object libraries and executable are generated from the FORTRAN source by
appropriate compilers and linkers for each computer system, and constitute secondary configuration
items. Documentation, however, is a primary configuration item, matching as closely as possible
the actual code. MELCOR documents are maintained as MASS-1 1 files.

MELCOR is undergoing active development and maintenance, which will likely continue for
several years with intermittent releases of new baselined versions. This plan is intended to apply to
all changes/updates to the code and documentation. A set of procedures has been established for
review and approval of such updates. Section 3.2 of this SCM Plan contains an overview of these
procedures, which center around the MELCOR Defect Investigation Report (DIR) Form.

MELCOR development and maintenance is primrwily the responsibility of the Thermal/Hydraulic
Analysis Division 6418 at Sandia National Laboratories. The MELCOR librarian has been
designated as the principal person responsible for coordinating the maintenance and updating of the
various MELCOR packages under the supewision of the MELCOR code development leader.
When necessary, other members of the code development group may perform tasks normally carried
out by the librarian, at the discretion of the code development leader. Once changes are approved, a
set of procedural steps for actual implementation of the updates into the program libraries,
documentation, FORTRAN source, object libraries, and executable is followed; detailed
descriptions of these steps form the bulk of this plan.

This plan does not address the maintenance of the subsidiary utility procedures and software
products (e.g., CMP) used to maintain and update MELCOR.

1.3 Definitions and Acronyms

CIMP Code Maintenance Package, the principal software tool used to generate
and modify MELCOR program libraries.

DIR Defect Investigation Report, the principal QA tool (termed in other places
as a Software Change Request) for initiating, diagnosing, planning,
reviewing, and implementing changes to MELCOR.

E-2

MELCOR SCM Plan -3- October 4, 1990

.n

IFs IntegratedFiles Store

Package A group of MELCOR routines modeling a set of like phenomena or
performing a well-defined set of functions.

1.4 References “

SandiaSoftware Guiu%line,Volume 4, “Softwqe Configuration Management”

ANSIIIEEE Std 828-1983

Quality Assurance Program Plan, Reactor Systems Safety Department 6410

“Machine-Dependent Coding”

moR NuREG/cR-5531

“MELCOR Primer”

“MELCOR Software Configuration Management Procedures”

MELCOR Users’ Guides

MELCOR Reference Manuals

MELCOR Architecture Programmers’ Guide

2. MANAGEMENT

2.1 Organization

The amount of manpower devoted to development and maintenance of MELCOR is currently
running between three and four Full-Time Equivalents (FI’Es), spread over six to eight staff
members. The MELCOR code development staff is currently encompassed by a single division at
Sandia, Thermal/Hydraulic Analysis Division 6418. Under the oversight of the division supervisor,
technical management of the project falls to the MELCOR code development leader. Several
additional staff members work full or part time on code maintenance, user support, and new model
development and implementation. Each staff member has primary responsibility for one or more
MELCOR packages. One of these staff members acts as the principal liaison with the MELCOR
user community, and resolves as many of the code problems encountered by the user community as
is pmctical. Another staff member acts as the officiaI MELCOR Iibrmian administering the
incorporation of changes to the code.

/---

E-3

MELCOR SCM Plan -4- October 4, 1990

L-”

2.2 SCM Responsibilities

Code change requests may originate horn the code development staff or the user community and are
submitted on DIR forms through the process described in Section 3.2, Configuration Control. These
are evaluated and prioritized by the code developer responsible for the MELCOR package
encompassing the change, under the direction of the code development leader.

Configuration control of proposed changes to the code is accomplished within the division (the
whole acting as a configuration control board, or CC13)through formal review of the updates by a
code developer other than the one originating the updates, and approval by the code development
leader or division supervisor (or alternate designated by the division supervisor).

The MELCOR librarian performs the bulk of the tasks directly related to configuration
management, not only administering the process and designating the update identifier but also
actually incorporating the updates into the controlled master program libraries for the various
MELCOR packages and generating new FORTRAN source, object libraries, and executable, as
specified within the MELCOR SCM Procedures (see Appendix A). The librarian periodically
provides a status accounting for pendkg DIRs and processed updates, and is also responsible for
maintaining the supporting utility procedures and software for updating MELCOR (i.e., CMP and
utilities developed to utilize CMP).

2.3 Interface Control

MELCOR is currently a self-contained projec~ and no organizational or hardware interfaces exist.
The only software interfaces that exist are the interface between the MELCOR plotting program
MELPLT and the commercial graphics package DISSPLA, and the interfaces with various operating
system-dependent routines called by MELCOR for functions such as date/time information and
system error handling. The latter interfaces are dealt with in detail in the document “MELCOR
Machine Dependent Coding.” When code modifications are needed to interface MELCOR with
new operating systems (e.g., UNICOS) or to coordinate with changes to old operating systems (e.g.,
changes to VAX/VMS), they are addressed when identified through the configuration control
procedures described in Section 3.2.

2.4 SCM Plan Implementation

This plan was informally implemented with release of MELCOR 1.6.0 as a starting baseline. (Prior
versions had been released, but changes were not managed through any formal configuration
identification or control scheme.) Subsequent updates to MELCOR 1.6.0 have followed the basic
configuration identification and control scheme described in this plan, although the plan was not
formally published until after release of MELCOR 1.8.0. Periodically, the program libraries are
resequenced at the release of a new baseline; that is, the change history included within the libraries
is removed and they are distributed as fresh libraries with all inactive lines of code deleted and all
active lines of code renumbered. (’Thenonresequenced libraries containing the change history are
then archived on the Sandia Restricted Access Network (RAN) Common File System (CFS). The
current baseline referenced by updates is MELCOR 1.8.0.

“

““b

E-4

MELCOR SCM Plan -5- October 4, 1990

7-=

2.5 Applicable Policies, Directives, and Procedures

Other than the contents of this plan (with its companion SCM Procedures document), there are no
other existing documents describing policies and procedures involving MELCOR SCM. This plan

* occasionally refers to other MELCOR doeumentation for supporting details.

3. SCM ACTIVJ1’IES . ..

3.1 Cotilguration Identification

A major release version of MELCOR is identified by a terminal zero in a 5-character name of the
form 1.7.0,1.8.0, etc. Each succeedng major release version incorporates a substantial increase in
modeIing capability or functionality from the previous version. Minor release versionsare
identified by a terminal digit other than zero, e.g., 1.7.1, and incorporate new capabilities that are
not quite as significant as those for major release versions. Both major and minor release versions
are official release baselines that are distributed to users outside Sandia and which have been fully
tested on a suite of release verification problems. All MELCOR packages in a release version of
MELCOR are identified by the release identifier.

For ease of development and maintenance in a multiperson environment, MELCOR is divided into
some twenty-odd packages. Each package is identified by a two-, three-, or four-character acron ym
or mnemonic identifier, generically referred to in this plan as “pkg” and listed in the MELCOR
primer document. The primary MELCOR configuration items, the package program libraries, are
each further subdivided into DECKS (Cray UPDATE and CMP parlance), one for each subprogram
in the package, and into COMDECKS, for sections of code (typically common blocks) that occur
identically in several places in MELCOR. Separate program libraries, one for DECKS (routines)
and one for COMDECKS (common blocks), are maintained for each MELCOR package. DECKS
are labeled the same as the subprogram nam~ COMDECKS are usually labeled the same as the
common blocks they contain. Lines of code within DECKS and COMDECKS are identified by the
DECK or COMDECK name and a line sequence numbe~ this numbering information is contained
within the program libraries generated by CMP.

Updates to a MELCOR package are assigned sequential alphabetic identifiers, starting with AA and
generically referred to in this plan as “id”, which are appended to the first three digits of the major
release number “rel” (e.g., 1.8AQ where “rel” is 1.8 and “id” is AQ).

Update sets are made up of one or more IDENTs (CMP parlance again) used by CMP to modify a
program library. Each IDENT refers to only a single DECK or COMDECK; the IDENT name is
formed by appending the update identifier to the DECK or COMDECK name. Lines of code
inserted by an IDENT are also identified by the IDENT name and a line sequence number. Code
inserted and deleted by an IDENT becomes a part of the change history of the program library.
DECKS and COMDECKS may also be purged from a program library by an IDENT. CMP program
libraries are generated in ASCII text format so that they maybe examined as needed using a text
editor to obtain the detailed change history.

E-5

MELCOR SCM Plan -6- October 4,1990
--- --------------------- -----------------------------

Typically, updates are implemented in small increments involving only one MELCOR package at a
time. Updates may involve either new models and capabilities, or error correction of existing code.
Internal versions of the constituent MELCOR packages for release version 1.8.0 are thus each
identified by 5-character names of the form 1.8id. They are internal to Sandia and have had only
limited testing, but the changes they embody have been promoted to official approval status
(through step Eon the DIR form) pending the next release of the code. These versions are created
from an earlier intemaJ version of the package by an update set 1.8id. This update set may also
reference previous update sets, even so far as to totally undo. the changes in a previous update. At
the time of a new release and generation of a new baseline, all internal update sets may be replaced
by a single update set identified by the new release number (e.g., “19”) which has the net effect of
all the changes made by the internal update sets.

The bulk of MELC.OR documentation consists of three documents for each package a Users’ Guide,
a Reference Manual, and a Programmers’ Guide. A few additional documents cover special topics
(e.g., this SCM Plan, or the MELCOR Primer). MELCOR documents are maintained in MASS-1 1
(a word processor) format and are identified by their title, the MELCOR version identifier to which
they refer, and a date. Modifications to documents made in resolving a DIR are summarized in an
appendix; at some later time, change bars may also be used to identify changes in a document from
the previous released version.

SCM for MELCOR is accomplished on a VAX 8700 computer running the VAX/VMS operating
system. Filenames correspond as closely as possible to the configuration identification scheme
outlined above. Table 1 gives the filenames for the various MELCOR configuration items.

3.2 Configuration Control

A DIR is used to initiate and track the disposition of proposed changes to MELCOR. All types of
changes, including correction of coding errors, revision or upgrade of physical models or numerical
solution algorithms, addition of new models or features, and correction or revision of
documentation, are resolved through the DIR procedures described in this section. A DIR either
explicitly identifies or indicates the possibility of defects in coding, documentation, or input files.
Thus, the term “defect” in the acronym “DIR” may refer to any actual or perceived shortcoming or
imperfection, ranging from confusing documentation to major errors or missing models.

A DIR may evolve through as many as five steps, which are designated by the letters A through E

A.
B.
c.
D.
E.

RequestfDescription
Diagnosis
Resolution Plan
Changes/Testing
Update Implementation

;

‘-.+’

E-6
.’ ---

.

MELCOR SCM Plan -7- October 4,1990

m.

----------------------------- --------------------- ---------------------- --------------------- ----------------------------

Table 1. MELCOR CI Filenames

pkg_RTN.SRC CMP source file for “pkg” routines (contains DECKS with
common blocks replaced by *CALL dwtives)

pkg_CBK.SRC” CMP source fde for “pkg” common blocks (contains
COMDECKS)

pkg_RTN_relid.PRL CMP program library for “pkg” version “relid routines

pkg_CBK_relid.PRL CMP program library for “pkg” version “relid” common blocks

pkg_RTN_id.UPD CMP update set “id” (contains *INSERT, *DELETE, and
*PURGE dwectives) to modify “pkgn routines in
pkg_RTN_relid.PRL

pkg_CBK_id,UPD CMP update set “id” (contains *INSERT, *DELETE, and
*PURGE directives) to modify “pkg” common blocks in
pkg_CBK_relid.PRL

pkg_RTN_id.XAD CMP update set “id” (contains new DECKS) to add “pkg”
routines to pkg_RTN_relid.PRL

pkg_CBK_id.XAD CMP update set “id” (contains new WOMDECK directives) to
add “pkg” common blocks to pkg_CBK_relid.PRL

pkg_relid.FOR FORTRAN source file (CMP compile file) for “pkg” version
“relid” generated from pkg_RTN_relid.PRL

pkg_relid.CBK FORTRAN common blocks for “pkg” version “relid” generated
from pkg_CBK_relid.PRL

pkgL.OLB Object library for version “relid” generated from optimized
compilation of pkg_relid.FOR

pkgLD.OLB Object library for Version “relid” generated from non-optimized
debug compilation of pkg_relid.FOR

Note Periods in “relid” are renlaced bv dashes (“-”) in filenames.

A complex DIR involving much time at steps B and/or C will require review and approval for each
step before proceeding to the next. On the other hand, for a simple DIR (i.e., one involving little
time to diagnose the defect and make the necessary modifications), it is permitted to proceed all the
way through step D before submitting the DIR for review and approval, at the discretion of the code
development leader.

E-7

MELCOR SCM Plan -8- October 4,1990
--

The person responsible for preparing a DIR for approval at each step is referred to as the
investigator and is assigned by the code development leader. More than one investigator may be
involved in a given step, and different investigators maybe responsible for successive steps of a
DIR. Review of a DIR step must be carried out by one or more code developers other than the
investigator(s), who are assigned by the code development leader. Approval of a step is normally
given by the code development leader, unless he is the investigator of that step. In that case,
approval must be given by the division supervisor or an alternate designated by him.

. ..
DIRs may include both typed and legibly handwritten information, as well as plots and other
information needed to fully describe the defec~ its diagnosis, and the plan for resolving it.
Differences between the modified and original coding, generated by automatic utilities such as the
DCL DIFFERENCES command, are attached to the DIR form. When a CMP update set is
generated by the MELCOR librarian after approval of one or more DIRs, it is also attached to the
DIRs before filing.

In step A, a request for resolution of a defect is recordd, the requester may be anyone using or
reviewing the code or documentation. The requester should complete the following information on
the DIR form for step A. TITLE (brief description); VERSION (of code or documentation); and
REQUESTER, REQUEST, and REQUEST BASIS. The form is then given to the MELCOR
librarian, who logs the requesti assigns it a number, checks it for completeness, and makes a copy
for the master DIR file. The code development leader then assigns an investigator for step B, who
is given the original DIR.

The request should describe the difficulty encountered by the requester, any new features or other
changes being requested, and the reasons for such changes. If the request is based on results
obtained during code execution, input and output files required to identify and diagnose the defects
must be accessible to the SNL Code Development Group in order to proceed with step B. Outside
requesters should supply such files via IBM-compatible floppy disks. Any related DIRs known by
the requester should be note& the code development leader may note additional related DIRs. If
more information is needed before investigation of the defect commences, the code development
leader will request it, and if the investigator needs additional material after diagnosis begins, he may
request it.

The investigator assigned for step B diagnoses the source of the problem and describes it fully. Any
relevant files should be transferred from floppy disks to SNL computer storage; the investigator
should record these file names in the DIR for later testing and reference by those assigned to review
the DIR. In many cases, step B will be trivial; however, care must be exercised to determine the
root cattse of the defect. In a number of situations, the diagnosis maybe complicated by the
interaction between MELCOR packages, and this may in fact be the most difficult and time-
consuming step in resolving the DIR. Due to this difficulty, there may be more than one
investigator for step B. For example, the first investigator may track down the general problem to a
specific package. The package developer may then diagnose the problem further to locate the
defect. During the diagnosis, other defects may also be discovered. These should be noted here and
addressed in step C.

In step C, a plan to resolve the defect is formulated and described. For simple changes (i.e., typos,
etc.) this step will be trivial. However, for some complex problems, the plan for resolution is
importan~ there may be a variety of alternatives to resolve a defect, one of which must be chosen

‘“d

E-8

MELCOR SCM Plan -9- October 4,1990

and justified. Additional defects identified during diagnosis may be resolved with this plan; if they
are not, reference should be made to specific DIRs submitted describing the defecfs for later
resolution, Also, if the defect is only partially resolved, a revised DIR should be submitted for later
full resolution of the problem. If a defect has already been resolved by a previous update, reference
to that update identifier should be made. Plans for resolving DIRs that involve more than a modest
amount of code ordocumentation changes must be reviewed by another code developer and
approved by the code development leader before commencing with step D.

The actual coding and/or documentation changes necessary to resolve the defect are made and
documented in step D. Changes to the code must be specified at a level of detail that is at least
sufficient for the DIR reviewer to fully understand their impact. This typically means attaching a
set of differences, automatically generated by the DCL DIFFERENCES command, with appropriate
highlighting and other notations generated manually to assist the reviewer in following the changes.
New or replacement routines must be documented sufficiently in step C and internally via
COMMENT lines for the reviewer to fully understand them as well. Changes to documentation
should include complete paragraphs or sections of modified and original text, with differences
highlighted in some fashion.

Testing of code changes is also conducted during step D and should be explicitly noted here. This
testing should verify that the changes resolve the defect as described in step C and (as far as
practical) that they do not introduce new errors into the code. The investigator may also identify
additional, more extensive testing that could be performed after approval of the changes to fully
validate a new code model. Separate effects tests of the package alone should be identified
separately from integral tests involving the entire code.

In step E, the CMP update set is prepared by the MELCOR librarian from the modified versions of
the source code generated by the code developer(s) during step D. New versions of the program
libraries, FORTRAN source code, object libraries, and executable code are then generated. Specific
procedures have been established to ensure that the changes actually made by the code developer(s)
are accurately reflected in the program libraries. An internal document, “MELCOR Software
Configuration Management Procedures,” describes these procedures in detail. The procedural
details change frequently, and so are not included as a part of the main body of this SCM Plan.
However, the version of these procedures current at the time of publication of this SCM Plan is
included as Appendix A.

3.3 Configuration Status Accounting

The MELCOR librarian is responsible for generating and dktributing information on the status of
DIRs and updates to the code on a periodic basis. To accomplish this, three log files are
maintained. The DIR log lists the DIRs in order by the numbers assigned to them, and includes the
DIR’s titte, the date it was submitted, the date it was approved (or shows the investigator responsible
for a pending DIR), and the update identifier implementing the changes. The update log lists each
update in order by its identifier, and includes a list of all DIRs (number and title) resolved with the
update and the date the update was approved. The package log lists each MELCOR package along
with all identifiers for updates referencing that package.
After an update is approved, the investigator for step D in the DIR procedures must generate a brief
summary (no more than a few sentences) of the changes effected by the update and their impact on
existing and future MELCOR calculations. This information is reported to users by the MELCOR

E-9

MELCOR SCM Plan -1o- October 4,1990
--- --_-------

librarian after implementation (step E) and is also used in the appropriate status and progress reports
distributed periodically to users.

At the beginning of each month, a current status report that summarizes changes in the above log
filesis generated and distributed to the MELCOR co-dedevelopment group. This report contains a
master list of all pending DIRs (number, title, &te submitted, and investigator), a separate list
grouping the pending DIR by package, and a list of updates/DIRs processed for the previous
month. The latter list should also contain the information describing the changes affected by the
updates and is also included in the MELCOR project progress reports.

3.4 Audits and Reviews

An internal physical configuration audit will be performed immediately prior to any new release of
MELCOR to external users. This audit will consist of each code developer reviewing the program
libraries of the packages assigned to him to verify that each subroutine and common block modified
or added by him is represented by an appropriate IDENT or DECK in the program library. To
accomplish this, all changed versions of routines and common blocks, along with their
corresponding original versions, must be retained by the code developers until this audit is
performed.

A functional configuration audit will also be performed prior to release of a new version of
MELCOR. For a minor version release, this will consist of verification that the code satisfactorily
executes the official MELCOR sample problem. For a major version release, this will consist of
verification that the code satisfactorily executes a more extensive set of validation and verification
test problems. These test problems will be chosen beforehand by the MELCOR code development
leader and division supemisor, and will include the set of problems successfully executed by
MELCOR for the previous release.

4. TOOLS, TECHNIQUES, AND METHODOLOGIES

The cornerstone tool used for the configuration management of MELCOR is the CMP (Code
Maintenance Package) set of programs, which provides a convenient and portable method of
maintaining computer programs and other data sets. CMP provides an update processor, update
correction set generation by file comparison, deck sorting, and various file handling utilities.
Library files can be wnuen in a system independent mode and transferred between different
computer systems without loss of correction history. CMP is written in strict FORTRAN 77 and can
be used on any system with sufficient memory and a full standard compiler.

‘L.

CMP is used to generate and modify the controlled ~project”) libraries for the MELCOR packages.
Upon release of a version of MELCOR, these libraries are archived as static libraries on the Sandia
Integrated File Storage (lFS) system and on copies of the release package stored on magnetic tape.
When making test modifications to MELCOR, a code developer must access the project libraries to
obtain the latest official versions of the routines or common blocks to be modified; the collection of
these film for the typical variety of modifications in process constitute the developer’s dynamic (or
programmer’s) library.

E-10

MELCOR SCM Plan -11- October 4,1990
-- -----

A set of DCL command procedures has been written to substantially automate the process of using
CMP to maintain MELCOR. The GENERATE.UPDATES command procedure is used to generate
update correction sets. Updating the program libraries is accomplished by the UPDATE command
procedure, and generation of FORTRAN source for a given computer and operating system is done
through the GENERATE.FORTMN command procedure. These command procedures are built
around the conventions established for the naming of MELCOR packages, versions, update
identifiers, file names, etc., and they simplify the process a great deal.

The GENERATE_FORTRAN command procedure also uses a separate utility progmm developed
for MELCOR called MELUTL. Separate program libraries are maintained for the common blocks
for each package. Applying GENERATE_FORTRAN to these common block libraries produces a
set of files containing the current versions of these common blocks. The function of MELUTL is to
then substitute these current versions of the common blocks into the FORTRAN source being
generated during application of GENERATl_FORTRAN to the program library for a package’s
routines.

A companion document to this Plan, “MELCOR Software Configuration Management Procedures,”
is located in Appendix A. It lists the procedural steps for a code developer and the MELCOR
librarian to follow when modifying a MELCOR package and implementing the corresponding
updates into the project libraries. The MELCOR SCM Procedures document is updated frequently
as the MELCOR project continues to automate its procedures for maintaining the code. Therefore,
these procedures have not been made apart of the body of this plan, but the version of these
procedures current with publication of this plan is given in Appendix A.

5. SUPPLIER CONTROL

All code written by third-party suppliers, such as other national laboratories, universities, and
subcontractors, must go through the DIR procedures described in Section 3.2, Configuration
Control. Upon review and approval, no distinction is made between this code and that generaled
within the MELCOR code development group.

6. RECORDS COLLECTION AND RETENTION

All DIR and update paperwork, electronic files containing MELCOR baseline program libraries,
update sets, and log files, and copies of official release packages distributed to users via magnetic
media are to be retained for the lifetime of the MELCOR code. The paperwork and release
packages are to be stored in clearly labeled boxes and kept in a safe but convenient place (typically
the code development leader’s office). Electronic files are to be archived on the Sandia IFS system.

E-n

L?z??

MELCOR Defect Investigation Report

Title:

EzEcl

Requester/Org.:
Code Version :

E

Ii Request basis Changes required II Severity
II /1

II❑ Error Cl Revision IIIINone 0 Documentation IIClMinor

❑ bJeu feature ❑ Other 0 Ccdin9 •l Input deck
•l Major

•l Ikdiun II
II II

It Step Investigated Date II Reviewed I Date II Ap+roved I Date
11 i i I

A. Request i

B. Diagnosis

C. Plan

D. Changes/Test ing

“ E. Irrp[ementat ion m
‘--’-

E-12

MELCOR SCM Procedures -13- February 16, 1990
----------------------------- --------------------- ---------------------- ---

Appendix A to MELCOR SCM Plan

MELCOR Software Configuration Management Procedures

February 16,1990

Randall M. Summers
Thermal/HydrauIic Ardysis

Division 6418
Sandia National Laboratories

Albuquerque, NM 87185

This document lists the procedural steps for a MELCOR code developer and the MELCOR
librarian to follow when modifying a MELCOR package and implementing the corresponding
updates into the controlled (“project”) libraries. These procedures constitute a companion document
to the MELCOR Software Configuration Management Plan; that document discusses the more
general concepts important to MELCOR SCM. MELCOR is developed and maintained principally
on a VAX 8700 computer running the VAX/VMS operating system; these procedures for MELCOR
SCM are determined in large part by this computing environment. Approximately 200,0005 12-byte
VAX blocks are required for SCM of MELCOR. DCL command procedures maintained by the
MELCOR librarian (UPDATE, GENERATE_UPDATES, and GENERATE.FORTRAN) use the
Sandia-developed Code Maintenance Package (CMP) for the automatic generation of program
libraries, updates, and Fortran source, respectively.

Configuration changes to MELCOR documentation are handled separately, under a
different set of procedural steps. These steps have not as yet been specifically determined. Note,
however, that review and approval of documentation changes are still handled within the DIR
review process.

In the following steps, lowercase strings appearing in filenames and so forth are meant 10
indicate replacement of the string by a specific package name, update identifier, et~ upper case
strings should be used verbatim. Example VAX/VMS commands = given in =Ch of ~ese steps
for updating severaI COR package routines and common blocks. These examdes are illustrative
onlv and W co sotute the SC D oceduresan“ Mr nd should not be slavishlv followed , In these

examples, the assigned update identifier “id is BG (the long form, including the baseline version to
which the update refers, would be 1.8BG); the last previous identifier is 1.8AQ (“oldrtnid”) for the
COR package routines and (“oldcbkid”) 1.8AZ for the COR package common blocks. It is
recommended that the procedures UPDATE, GENERATl_UPDATllS, and
GENERATE_FORTRAN be exercised in interactive prompt mode by issuing only the UPD, GUPD,
and GFOR commands without parameters, rather than using parameters on the command line as
shown in this document.

E-13

MELCOR SCM Procedures -14- Febmary 16, 1990

Procedural Stem for the Code Develouer

1. Create a new subdirectory of the form [...DIRnum] to process the DIR(s). Only files related
to the DIR(s) being processed should be stored in this subdirectory. AIso, since the
GENERATE.UPDATES utility procedure used by the MELCOR librarian will work
properly on only one package at a time, it should be clear which files belong to each
package, (This is generally the case, since most routines in most packages begin with the
package identifier “pkg”; three notable exceptions are the Cavity (CAV), Executive (EXEC),
and Utility (UTIL) packages.) If identification of files with their respective packages is not
clear, separate subdirectories should be used for those packages.

$ CREATE/DIR lTtMSUMME.MELCOR.V180.DIR612]
$ SET DEF [RMSUMME.MELCOR.V180.DIR612]

2. Create individual Fortran files from the old version program libraries for each package
routine (DECK) to be modified; these files should be named deckname.ORG, where
“deckname” is the name of the DECK (and hence the routine). Also, create a file as well for
the old version common blocks if any need to be modified this file should be named
pkg_CBK.ORG. Creation of these fdes is best accomplished by applying the
GENERA~_FORTRAN utility procedure to the latest CMP program libraries
(pkg_RTN_oldrtnid.PRL and pkg_CBK_oldcbkid.PRL files).

A code developer should make sure that he himself does not have updates pending or
changes in process that affect routines or common blocks about to be modified.
Furthermore, any code developer making changes to a package for which he does not have
primary responsibility must verify with both the MELCOR librarian and the code developer
who ~ have primary responsibility that there are no other updates pending or changes in
process that affect these routines or common blocks. The librarian will act as a central
clearinghouse for all pending updates.

If other updates affecting these routines or common blocks are pending implementation; or
some other developer is in the process of modifying them, other means for generating the
.ORG fdes may be used, as appropriate to the situation. However, much care should be

EK@S@ to get the proper routines or common blocks ~d to avoid introducing extraneous
lines or making other inadvertent changes. In particular, extraneous blank lines must not be
inserted, as may happen when writing a Paste buffer using SLEM or EDT. Generation of the
correct .ORG file will be double-checked by the MELCOR librarian after DIR approval
when updates are generated for actual implementation into the program libraries.

$ GFOR COR CBK 1.8AZ LIST VAX LIBS DIRCOR:
$ RENAME COR.1-8AZ.CBK COR_CBK.ORG
$ GFOR COR RTN 1.8AQ LIST VAX LIBS DIRCOR
CORRN1

$ (split COR_l-8AQ.RTN into CORRN1 .ORG, etc.)
(no automated procedure developed to split these out yet)

E-14

MELCOR SCM Procedures -15- February 16, 1990
-- -------

3. Make the desired modifications to routines and common blocks using a text editor. These
modifications should follow the plan outlined in step C of the Defect Investigation Report
(DIR) form and must receive sufficient testing to verify that the defect is adequately
resolved. Modilled routine files should be named deekname.FOR, and the modified common
block file should be named pkg_CBK.MOD. Replacement routines should be named
decknameRPL, new routines should be named deckname.NEW, and deleted routines should
be named deckname.DEL. Table 1 summarizes the files created by the code developer.

. ..

Table 1. Filenames Created bv Code Develou

decknameYOR

deckname.NEW

deckname.RPL

deckname.DEL

deckname.ORG

deckname.DIF

pkg_CBK.MOD

pkg_CBK.ORG

pkg_CBK.DIF

Modified Fortran source routines

New Fortran source routines

Replacement Fortran source routines

Deleted Fortran source routines (this maybe an empty
file)

Most recent Fortran source routines for modified,
replaced, and deleted decks

File containing differences between the .ORG files
and the .FOR or .RPL files

Replacement file for common blocks

Most recent common block file

File containing differences between the
pkg_CBK.ORG and pkg_CBK.MOD files

The code developer m explicitly identify in step D of the DIR form all routines and
packages that have not been changed directly but which are affected by changes in common
blocks. New Fortran source must be generated for these routines and packages by the
MELCOR librarian, even though the program libraries have not been changed for these
DECKS.

The code developer also IDUSAexplicitly state in step D of the DIR form whether any
modifications to code within *IF DEF blocks have been made. These changes ~ receive
special attention, perhaps generating the updates by hand, since the GENERATE.UPDATES
utility procedure used by the MELCOR librarian may not adequately handle ‘them.

E-15

MELCOR SCM Procedures -16- February 16, 1990
..--- .-- —------------- ----.. -... ------- —..-—--.--. —..-

New common blocks inserted in pkg_CBK.MOD must be placed in alphanumeric
COMDECK order to facilitate checking by the MELCOR librarian.

$ EDT/OUT=.MOD COR_CBK.ORG
$ EDT/OUT=.FOR CORRN1.ORG

‘.

. ..

4. Generate text differences for the modified routines and common blocks using the VAX/VMS
DIFFERENCES commamk the files should be named deckname.DIF and pkg_CBK.DIF, and
should be appended to the DIR form.

$ DIF/OUT=.DIF CORRN1.FOR .ORG

$ DIF/Oti=.DIF COR.CBK.MOD .ORG

5. Submit to the code development leader a DIR Form ffled out through step D with .DIF files
and any other pertinent information (e.g., plots comparing runs with old and new routines)
attached for checking and approval. If the effects of the modifications are not clear from the
DIFFERENCES output only, full subroutines should also be included

$ IMP/TWO/LAND *.Dm

6. Upon DIR approval and assignment of a two-letter update identifier (“id) by the MELCOR
librarian, write a short summary description of the update in ASCII text and store in file
UD3:[MELCOR.LOG]UPDid.TXT. Include any pertinent information regarding the
expected effect on new or existing calculations, especially with regard to incompatible restart
files. When the update is implemented by the MELCOR librarian, this file will be mailed to
MELCOR users and included in condensed form in progress reports and the users newsletter.

$ EDT UD3:[MELCOR.LOG] UPDBG.TXT

\--_/

‘1. Verify that the all updates to resolve the DIR have been completely and properly
implemented into the controlled program libraries and initial under the “Reviewed” block
under step Eon tie DIR Form. Completing this step will involve viewing the program
libraries, which are created as ASCII text files. DO NOT DELETE .FOR, .RPL, .NEW,
AND .ORG FILES.

E-16

MELCOR SCM Procedures -17- February 16,1990

Procedural steDs for the MELCOR Librarian

1. A two-letter update identifier “id (sequential to the previous identifier assigned for fif

~, not just tie package being modified) must be assigned. Create one or more new
subdirectories to process the update, with subdirectory names of the form
[MELCOR.pkg.V180.id]. Only files related to the DIR(s) being processed should be stored
in these subdirectories. Since the GENERATE_UPDATES utility procedure used below will
work properly on only one package at a time, each package to be modified must have a
separate subdirectory.

$ CREAT4DIR [MELCOR.COR.V180.BG]
$ SET DEF WCOR.COR.V180.BG]

2. Copy the .FOR, .RPL, .NEW, .DEL, and .MOD files from the subdirectory referenced in the
DIR form for each package. Also, create temporary .CHK files for each routine by applying
the GENERATE_FORTRAN utility procedure to the latest CMP program libraries
(pkg_RTN_oldrtnid.PRL and pkg_CBK_oldcbkid.PRL files) and check for differences with
the .ORG files used by the code developer as his starting point. There must be Z&IQ
differences when trailing blanks are ignored. Once this has been verified, the .CHK files
may be deleted, but the .DIF file showing the check was made must be retained for auditing
purposes. Extraneous blank lines may be eliminated if necessary by the MELCOR librarian,
but should not exist if the code developer properly followed step 2 of his procedures.

$ COPY
NSUMME.MELCOR.V180.DIR6 l2]*.FOR,*.RPL,*.NEW,*.DEL,*.MOD

$ GFOR COR CBK 1.8AZ LIST VAX LIBS DIRCOR
$ RENAME COR_l-8AZ.CBK COR.CBK.CHK
$ DIF/iG=TR/OUT COR.CBK.CHK

~SUMME.MELCOR.V180.DIR612]COR_CBK.ORG
$ TYPE COR_CBK.DIF

$ GFOR COR RTN 1.8AQ LIST VAX LIBS DIRCOR:
CORRN1

$ FkNAMECOR.1-8AZ.RTN COR_RTN.CHK
$ COPY lllMSUMME.MELCOR.V180.DIR612]*.ORG/EXCl=COR_CBK

COR_RTN.ORG
$ DIF/IG=T’R/OUT COR_RTN.CHK .ORG
$ TYPE COR_RTN.DIF

$ DELETE *.CHIQ*,*.ORG;*

E-17

,.

MELCOR SCM Procedures -18- February 16, 1990

1-’

3. Generate CMP updates for the modified routines (pkg_RTN-id.mD and pkg_RTN.id.XAD
files) and common blocks (pkg_CBK_id.UPD and pkg_CBK_id.XAD files) using the
GENERA~_UPDATES utility procedure. Snecial attention must be given to any
modifications of code within *IF DEF blocks, perhaps even creating the updates by hand,
since GENERATE.UPDATES may not adequately handle them. Modifications to code
within *IF DEF blocks must have been indicated by the code developer on the DIR form
under step D.

. ..

The CMP updates that are generated should be quickly compared with the differences output
supplied by the code developer to verify that nothing is amiss and that faulty matches have
not been made, thus creating many changes unnecessarily. If that happens, CMPDIF may be
executed again with a different matching parameter to reduce the size of the IDENT.

*PURGES generated by processing of the .RPL files must be manually replaced by the
command *DELETE fwstline,lastline. Also, the corresponding *DECK and *COMDECK
directives in the .XAD files must be changed to *IDENT decknameid, with appropriate
*lNSERT titives, and mov~, ~ong Wifi&e new rou~e and common block lines, into

the .UPD fdes. This will retain the history of the deleted routine or common block for
comparison with its replamment.

$ GUPD COR CBK 1.8AQ BG DIRCOR
$ GUPD COR RTN 1.8AZ BG DIRCOR

4. Copy the .UPD and .XAD files for each package to its LATEST subdirectory (defined by
logical symbol “DIRpkg”) and go to that subdirectory to update the program libraries,
For@an source, and object libraries.

$ COPY *.UPD,*.XAD DIRCOR
$ SET DEF DIRCOR

5. Generate new CMP program libraries for each package’s routines and common blocks
(pkg_RTN_updid.PRL and pkg_CBK_updid.pRL) using tie mDA~ ~tility procedure.
The string “updid” is the long form that includes the baseline version number to which the
Update refers (e.g ., 1.8). The previous progra m libraries should be saved on the IFS for
t)ossible error recovev and then deleted from the VAX to save space. Some libraries stored.
on the IFS may be deleted periodically if gaps between versions that are retained would not
cause a major inconvenience in recreating a specific version. Retaining every third or fourth
version of a program library on the IFS, in addition to the second most recent, is suggested as
being reasonable.

$ UPD COR CBK 1.8AZ BG DIRCOR
$ UPD COR RTN 1.8AQ BG DIRCOR

6. If common blocks for a package have been changed, generate a new common block file for
VAX (pkgLATESTVAX.CBK) from the newly created program library. This must be

—

L/”

E-18

MELCOR SCM Procedures -19- February ,16, 1990

createdpriortogeneratingany of the routines to ensure that the latest common blocks are
incorporated into the routines. Compare the new common blocks with the modified common
blocks (.MOD file) created by the code developer. Except for non-VAX/VMS code
(bracketed by *IF DEF directives) that is inserted by the update, there must be ZGIQ

. differences when trailing blanks are ignored. This is a double check to ensure that the utility
procedures have functioned properly with no errors. The DIFFERENCES output file
(.CBKDIF) showing the check was made must be retained for auditing purposes.

$ GFOR COR CBK 1.8BG LIST VAX”LIBS’DIRCOR
$ DIF/IG=TR/OUT=.CBKDIF COR.1-8BG.CBK [-.BG]COR.CBK.MOD
$ TYPE COR.I-8BG.CBKDIF
$ COPY COR.1-8BG.CBK CORLATESTVAX.CBK

7. As a double check to ensure that the utility procedures have functioned properly with no
errors, generate VAXFortran for routines that have been modifkd (pkg_updid.FOR) from
the newly created program libraries. Note that the GENERATE.FORTRAN utility gives the
.RTN extension by defaul~ this should be renamed to .FOR for VAX Fortran. Compare
these routines with the modified routines (.FOR, .RPL, and .NEW files) created by the code
developer. Except for non-VAX/VMS code (bracketed by *IF DEF directives) that is
inserted by the update, there must be ~ differences when trailing blanks are ignored. The
DIFFERENCES output file (.RTNDIF) showing the cheek was made must be retained for
auditing purposes.

$ GFOR COR RTN 1.8BG LIST VAX LIBS DIRCOR
CORRN1

$ RENAMECOR.1-8BG.RTN .FOR

$ COPY [-.BG]*.*/EXCL=*.*D* COR_l-8BG.CHK
$ DIIVK3=TIUOUT=.RTNDIF COR_l-8BG.FOR .CHK
$ TYPE COR.1-8BG.RTNDIF
$ DELETE COR_l-8BG.CHK,*

8. Generate new Fortran common blocks for the CRAY (pkgLATESTCRAY.CBK) from the
newly created program libraries.

$ GFOR COR CBK 1.8BG LIST CRAY LIBS DIRCOR
$ RENAME COR_l-8BG.CBK CORLATESTCRAY.CBK

9. Generate new Fortran routines for W VAX and CRAY (pkg_updid.FOR and
pkg_updid.RTN, respectively) from the newly created program libraries. This step is
distinguished from Step 7 in that N routines involving u common blocks that have been
changed are included, not just routines. The MELCOR librarian may also choose during this
step to generate Fortran source for the entire package using the ALL qualifier instead of

E-19

MELCOR SCM Procedures -20- February 16, 1990
--

10.

11.

12.

LIST with the GENERATE_FORTRAN utility. Note again that this utility gives the .RTN
extension by defaul~ renaming to .FOR should be done only for VAX Fortran, so ~.
(If no additional routines are necessary or desired for compilation and generation of new
object libraries, duplicating the VAX Fortran created in Step 7 is not necessary.)

$ GFOR COR RTN 1.8BG ALL VAX LIBS DIRCOR
$ RENAME COR.1-8BG.RTN .FOR
$ PURGE COR_l-8BG.FOR . ..

$ GFOR COR RTN 1.8BG LIST CRAY LIBS DIRCOR
CORRN1

Compile VAX routines twice: once with /OPT qualifier and once with
/NOOPT~EBUG/CHECK=@OUNDS,OvERFLOw), both times with STANDARD=ALL.
Warnings related to VAX-specific code (e.g., READONLY in OPEN statements) may be
ignore@ other warnings or errors must be resolved.

$ FOR/NOLIST/STAND=ALL/’OPT/OBJ=.OPT COR_l-8BG
$ FOR/NOLIST/STAND=ALL/NOOPT/DEBUG/CHECK=@OUNDS,OVERF)

coR_l-8BG

Update VAX optimized and debug object libraries (pkgL.OLB and pkgLD.OLB files) with
newly created object files. For nontrivial changes, and especially for changes modifying the
data base, save the old object libraries for a period of one week, renamed as
pkgL_oldid.OLB and pkgLD_oldid.OLB. If Fortran source for the whole package has been
generated, use the LIB/CREA command; otherwise use the LIWREPL command. Once
object files have been incorporated into an object library, they maybe deleted.

$ COPY CORL.OLB CORL_l-8AQ.OLB
$ COPY CORLD.OLB CORLD_l-8AQ.0LB
$ LIB/REPL CORL COR.1-8BG.OPT
$ LIB/REPL CORLD COR_l-8BG.OBJ
$ DELETE COR_l-8BG.0n;*,COR_ l-8BG.OBJ;*

Create new optimized and debug MELGEN and MELCOR executable in
UD3:[MELCOR.EXE] using the LINKGEN, LINKGEND, LINKCOR, and LINKCORD
utility procedures. The .EXE filenames should include the version identifier.

$ SET DEF UD3:[MELCOR.EXE]
$ LINKGEN 1-8BG
$ LINKGEND 1-8BG
$ LINKCOR 1-8BG
$ LINKCORD 1-8BG

E-20

MELCOR SCM Procedures -21- February 16, 1990

13. Store CRAY Fortran source created in Step 9 on IFS (in VAX native text, uppercase) on
node /MELCOR/V180/LATEST/pk~updid.RTN. The CRAY Fortran source can then be
deleted fkom the VAX.

$ NETON
$ MAss
? D~A~T DJR=/MJ3LCOR/V180/LA~T
? STO~ COR_l-8BG.RTN
? END

$ NETOFF
$ DELETE COR.1-8BG.RTI%*

14. Create updated CRAY object (build) library and new MELCOR and MELGEN absolutes
using the CCL procedures BOLB and BEXE (run them in interactive prompt mode). These
absolutes should be stored on IFS (the procedures prompt for this).

/ upld bolb ud3:[melcor.cmp]bolb.com
/ upld bexe ud3:[melcor.cmp]bexe.com
/ bolb
I bexe

P

15. Fill out and attach the official MELCOR Up&te cover shee~ along with listings of the
updates that were generated, and file all of the DIR paperwork in sequential update order
(not DIR order). Initial the “Investigated” block on Step E (Implementation) of the DIR
Form, and return it to the code developer that processed the changes for verification that the

updates were completely and properly implemented. Copies of revised or new
documentation should be retained separately for distribution to users.

$ IMP~O/LAND COR_*_BG.UPD,COR_*_BG.XAD

16. MAIL the message generated by the code developer regarding the update (stored in
[MELCOR.LOG]UPDid.TXT) to MELCOR users informing them of the implementation of
the update into the latest libraries.

$ MAIIJSUBJ=’’MELCOR UPDATE 1.8BG - [MELCOR.LOG]UPDBG.TXT
@MAIL.USR

17. Modify the entries in the DIR log files to reflect approval of the update resolving the DIRs,
and add the update to the update log file.

$ EDT [MELCOR.LOG]DIRLOG.TXT
$ EDT WOR.LOG]UPDLOG.TXT
$ EDT [MELCOR.LOG]PKGLOG.~

E-21

E-22

P

Appendix F
Software Configuration Management Plan Template

General System
Software Configuration”Management Plan

Template for General Use

This template for a project Software Configuration Management Plan is structured after AIWWIEEE
Std 828-1990. Std 828-1990 is slightly different in organization than its predecessor, Std 828-1983.
However, the core content of information required is unchanged.

The reader must tailor the presentation of information this template contains to meet the needs of
the project at hand. While a standard format is both desirable and appropriate for Sandia, the
presentation sequence and style is subject to the needs of the plan’s users and the project
requirements. The six sections of information should be included in any such restnctured plan.
Small projects may find it advantageous to consolidate the sections and make the Software
Configuration Management Plan a chapter in an overall Software Quality Plan or Software
Development Plan. Large complex projects may need to expand the subdividon of information
presented to adequately address those complexities.

The template is available on electronic media and can be translated to almost any word processor
format. Section headings are in bold type. Italics type is instructional information that should bc
deleted when a section is filled in with the necessary information for the project.

Italicbmdtexf within this document is meant to provide information only and should not be
left in the document when it is completed. Standard text may remain in the document.

F-1

Contents

1. Introduction ... #

1.1 Ww ..
1.2 scop ...
1.3 kfinitions mdAcmnyms ..
1.4 Referents ...J.................................

2. Mmagement ..

2.1 Organization ..
2.2 SCM Rm~nsibfiitim ...
2.3 Applic*le Poficim. Dk=tives. and Rwdms ...

3. Sofw~e Configwation Mmagement Activities ...

3.1 Configmtion Identification ..-
3.1.1 B=elines ...
3.1.2 SCM Libmies ...
3.2 Configuration Control ..
3.2.1 Software Change Request /Rwuesting Changes ..
3.2.2 Functions oftie Configmtion ConBol Bored ...
3.2.3 Evd@ting mdImplementig Chmges ..-
3.3 Cofilgwtion Stitus Amuntig ..
3.4 AudiB ad Reviews ..
3.5 Interface Control ..
3.6 Submnkwtor~endor/Supplier.Con@ol..
3.7 Records Collection and Retention ..

4. Schedules— SCMP Implementation ...

4.1 Configuration Control Bored ..
4.2 B~etines ..
4.3 Change Con@ol...-
4.4 Status Reporting, Reviews, and AudiB ...

5. Resources ...

5.1 Tools, Techniques, and Methodologies ..
5.2 Personnel ..-
5.3 Training ...

6. Plan Maintenance ..-

#
#
#
#

#

#
#
#

#

#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#

#

#
#
#

#

F-2

,n

1. Introduction

1.1Purpose

Briejly state why this plan exists and who the intended audience is.

1.2 Scope

Briefly describe the software &velopment project. Define what this plan will and will not address.
I&ntifi the so~are products that will be addressed in this plan.

Sojiware products include the Sojiware Reqw”rements Specification, Design Information,
Source Co& and Executable, Off-the-Shelf (OZ$) or Vendor Software, Compilers, Editors,
Computer-Aided Sojlware Engineering (CASE) tools, Test Procedures and Test Data,
lnte~ace Documents.

Other products that can be controlled under this plan are the contractual documents that
fostered the project. Identifi the organizations involved and the timeframe of the project.

For embedded software, indicate the relationship between software configuration management
(SCM) and the hardware or system configuration management for the project.

13 Definitions and Acronyms

Reference ANSIIIEEE 610.12-1990, “IEEE Standard Glossary of Sojiware Engineering
Terminology” as the source for common terms used in this plan. Defie only new terms or terms
used in a unique way in this plan, for example:

Inte@ace Control. The process of (1) identifying all~ctwnal and physical characteristics
relevaru to the inte~acing of two or more CIS provided by one or more organizations, and (2)
ensuring that proposed changes to these characteristics are evaluated and approved prior to
implementation.

Suppiier. Any project, organization, or other group (e.g., matrixed group, another division,
&partment) external to the management organization(s) in this plan that provides
sofiarelfirmwarelhardware components necessary to the success of the sofiare project(s) within
the scope of this plan.

Provide a list of acronyms so they can always be found in one location, for example:

CASE Computer -Aided Sojlware Engineering
CCB Configuration Control Board
CI Configuration Item
FCA Functional Configuration Audit
IEEE Institute of Electrical and Electronic Engineers

Local Area Network
OTS off-the-shelf

F-3

PCA Physical Configuration Audit
PROM Programmable Read Only Memory
SCCB Sojlware Configuration Control Board
Scikf Sojlware Configuration Management
UART Universal Asynchronous ReceiveriTransmitter

1.4 References

List the documents cited elsewhere in this plan. Also list governing documents such as contractual
standards and directives if external customers are involved. Referencing existing policies, practices
and procedures directly applicable to this plan will avoid reiterating similar information. A
distinction should be made between references necessary to execute this plan and general or
supplementary information. Sample general references might include:

[1] Sandia National Laboratory Quality Plan.
[2] Sandia Software Guidelines, Vols 1,3,4 and 5
[3] SNL Software Development Policy and Recommended Software Development

Practices, L. D. Bertholf memorandum, November 19,1990
[4] ANSI.iIEE13Std 610.12-1990, IEEE Standard G1OSW of Sofwme Engineering

Terminology.
[5] ANS~EE Std 828-1990, IEEE Standard for Softw= Configmtion M~agement
[6] ANSVIEEE Std 1042-1987, KEEEGuide to Software Configuration Management.

Some governing documents that may be applicable for DoD reimbursable programs include:
u

[7] DOD-STD-2167A, Military Standard, Defense System Software Development, Chapter
4.5, Software Configuration Management.

[8] DOD-STD-2168, Military Standard, Defense System Software Quality Program.

Some references that may be necessa~ ~the Engineering Release System and (Sandia) Drawing
System are used include

[9] EP401O33, “Revising Drawings rmd Part Numbers to Define Product Changes.”
[10] EP401O35, “Sandia and Production Agency Acceptance Equipment Interfaces.”
[11] EP401O43, “Acceptance Equipment Program Definition.”
[12] EP401O44, “Engineering Release System.”

.

[13] EP401O45, “Definition of Computer Software Configuration Items.”
[14] EP401O54, “Nine-Digit Part Number System.”

2. Management

2.1 Organization

Provide an organizational chart of the project structure if this is a stand-alone plan. Describe the
functwnal roles of each managerial and technical organization, the relationships between
organizations, and how SCM$ts into the organizational structure .

-.

‘\

2.2 SCM Responsibilities

Describe h (ie., what organizational entity or project positwn) is responsible for the activities in
Section 3, ie., who has responsibility for the sojiware component(s); who will provide representation

* to the Sofiware Configuration Control Board (SCCB) and the system Configuration Control Board
(CCB), ifit exists: (~no system CCB exists, then the SCCB is usually referred to as just the CCB);
who is responsible for i&ntifiing and controlling the software, who has the authority to release
soflware, data, or documentation, who will perform audits andprovi& status accounting
informatwn as necessary, who is responsible for interface control within the system and external to
the system; who is responsible for venderlsupplier sofiare.

2.3 ApplicablePolicies,Directives,and Procedures

Identify any external policies or procedures and describe how they affect this plan. This is the
section to_ how these factors injluence or constrain the approach taken in this plan.

3. Software Configuration Management Activities

W The traditional SCM activities are Configuration Identification, Configuration
Control, Configuration Status Accounting, and Audits and Reviews. The new Std 828-
1990 has moved into this section “other”activities. Inte@ace Control was movedfiom
Section 2. Supplier (subcontractor, vendor, supplier) Control was movedj?om Section
5. Records Collection and Retention (Section 6 in the old Std 828-1983) was deleted
but has been included in this section by the author.

3.1 Configuration Identification

Define what software will require configuration identification and at what level will the
establishment of a Configuration Item (CI) begin. The size of the project has little bearing on the
necessity to accurately establish conjiguratwn identification.

Describe how the process of configuration identification will be accomplished. The information in
this section should document an identification scheme that rejlects the structure of lhe software
product. Areas to consider include those items and components associated with the released
programs, the labeling of subcomponents such as document files and code modules (maybe
constrained by the support sofiware), and the relationship between these two “levels”of
identification. Special consi&ration must be given identijjing computer programs embedded in
[EP]ROM. If the software i&ntijication scheme is driven by the hardware identification scheme,
describe the activities that support this relationship.

3.1.1 Baselines

Describe the relationships between the Functional, Allocated, and Product Baselines to the software
development phases. Normally, the Functional Baseline is related to system requirements, and the
Allocated Baseline is based on the sojlware requirements. The Product Baseline is a version of the

i-

F-5

released software. I&ntlfi any other baselines necessary to support to this project. Dejine the
requirements to verify each baseline.

3.1.2 SCM Libraries

Describe the scope of SCM libraries: Personal Library, Project Library, and Release Library.
Identify the format, locatwn, documentatwn requirements and access control for each. On single
akveloper projects there maybe no difference between the Pgrsonql and Project Libraries.
However, there should always be a distinct Release Library. Describe the relatwnship, if any, to
dw (Sandia) Drawing System.

3.2 Configuration Control

Dejine what software will be controlled (what is the lowest control element or smallest entity that
will be controlled: what are the deliverable products or configuration items (CIS) that will be
released as separate entities) and what mechanism(s) will be used tofacilitate change control, e.g.,
Sojiware Change Request (SCR), Version Description Document. For software utilizing the
Engineering Release System, use of the Advance Change Or&r (ACO), Final Change Order (FCO),
and Complete Engineering Release (CER) could be addressed.

Describe the procedures used to make changes to known baselines. Identijj the level of authori~
necessary for controlling changes to each baseline and each SCM lbrary. This may vary over the
life cycle of the project. The change authority level necessary to make changes before a baseline is
established is usually less than ajier it has been approved. Likewise, changes to components in a
Personal Library are usually self-approved by the developer while a change to a component in the
Project Library that two or more people are working out of requires approval by some higher level
authority (e.g., an SCCB.)

Define what OTS sojlware will be controlled. This should include operating systems, compilers, and
purchased test or emulation so~are.

3.2.1 Software Change Request I Requesting Changes

Describe the methods and activities used to process change requests. Identijj any differentiatwn
based on whether the change originated during test or operatwnal use, or whether the change k a
correction, enhancement or a conversion (an aabptation to a new environment - hardwareloperating
system, etc.). Also, identifi the information required for approval of a change and how the change
will be implemented throughout the abcumentation (requirements specification, design
documtwation, test plan and procedures.)

3.2.2 Functions of the Configuration ControI Board

.-.

Stipulate the scope and authority of the review board(s) and the operational procedures to which
~heboard(s) will subscribe . The size of the project will determ.ne the size of the CCB and the
representation that the CCB requires. For small projects, the CCB maybe a very informal group
and may not consist of more than a couple of people. In this case the roles maybe little more than a
coordiwtion eflort between a developer and a user or next assembly &veloper. On larger projects,

F-6

the CCB maybe involved in coordinating all the technical work performed by groups of developers.
There may be multiple CCBS if the project complexity warrants it. The CCB of a project may have
to interface with other change authorities due to interoperability issues. External requirements
(i&nt@ed in 2.3, Applicable Policies, Directives, and Procedures) may require that explicit
jiutctwns be petiormed by the CCB. Those would be detailed here.

323 Evaluating and Implementing Changes

Dejine the engineering analysis required to determi~ the impact of proposed changes and the
procedures to review the analysis. This may change as &velopment progresses. Describe the
activities and processes for verifiing and incorporating changes. Specify any minimum information
necessa~ for a change package to be complete. I&ntifi the activities for releasing new baselines.

33 Configuration Status Accounting

I&ntify what ~pes of information need to be reported and who the inten&d audience is. Status of
change requests should be available to &velopers and managers. Developers would need to know
the content of any particular baseline, especially the reviswn level of each module in the
operational program. Transaction records may be necessary perwdically to recoverfiom mistakes.
Managers may also want status accounting data to track progress against a defined Sojlware
Development Plan.

3.4 Audits and Reviews

Describe the review activities that are normally pe~ormed as an oversightjimction. They are
usually designed to ensure that the &velopers have done all their work in a way that will salisfi
internal and external obligations. They could also inclua%areas such as operation of the SCM
libraries, adherence to SCM procedures specijied in this plan, peflorming a Physical Configuration
Audit (PCA) —deternuning that all the items identified as being part of con.guration are present,
or pe~orndng a Functwnal Configuration Audit (FCA) —an acknowledgment that each item was
tested or inspected to verijj that it satisfied the functwns &j7ned in the specifications or contract for
which it was developed.

3.S Interface Control

The discusswn shcxdd concentrate on the sojiware-sojiware and sojiware-hardware inte~ace
elements for most plans. Describe or reference any agreements, control mechanisms, or other
procedures that address the interfaces important to this project. These are the activities that ensure
changes to the CIS of this project are coordinated with changes to interfacing items outside the
scope of this plan or external to this project.

If this is a large project wilh many diverse groups, organizatwnal interJace elements should be
included as well as life cycle phase transition interfaces. If organizational inte@aces are
addressed, the activities supporting that structure would also be detailed here.

F-7

3.6 Subcontractor/Vendor/Supplier Control

Describe any requirements placed on vendors or suppliers external to this project that relale to the
need for insight into their life cycle process configuration management approach. Describe the
SCM activities associated with incorporating any sojiware &veloped outside the scope of this
project into this project.. This may include defining how the supplier will be monitored for
compliance to contractual agreements and any supplier participation in change activities.

This section or Sectwn 2 shotdd &scribe configuration ~ontrol procedures for
integrating changes to supplier software and testinglverification of components
dependent on that sojhvare. For example, how is sofiare re-verijied when a new
compiler version is released?

Discuss how any proprietary items will be handled for security of information and traceability of
ownership. Even if the sojiware is acquired as OTS sojlware, there should be a description of how
the sofiare will be received, tested and placed under SCM. As a minimum, any acquired support
software should be placed under SCM for version i&ntijication.

3.7 Records Collection and Retention

W This section used to be Section 6 in the old Std 828-1983. The new Std 828-1990
does not explicitly address this area. It has been ad&d to Section 3 in this template
because the author feels it is a necessary element of any Sojlware Configuration
Management Plan.

Define the ittfomtion that will be kept, the location of the information, and the length of time that
it will be kept. As a minimum this should consist of copies of released material that provide backup
and disaster protection for the lije of the project. Other information may include change history,
test and approvai records, (XB proceedings, audits, reviews, and status reports. Cost, liabili~, and
warranty considerations will help in deciding how much information to keep.

4. Schedules — SCMP Implementation

W The contents of this section was previously in Section 2 of the old Std 828-1983. The
new Std 828-1990 has moved Implementation (now Schedules) to this section.

(It is better not to put dates in Section 4. Any schedules with actual dates should be
included as an attachment. A chart overlaying SCM activities onto project managemen~
major milestone time line is one effective representation of the SCM schedule. Be sure to
focus on* configuration control events.)

4.1 Configuration Control Board

L./

,=
.

Specifi in terms of the life cycle or milestones when the CCB will be established, when it will
accomplish major tasks such as approving a complete baseline or release, and when significant
changes in the structure of the CCB are expected to occur.

F-8

-./

4.2 Baselines

Describe any dependencies concerning other project activities, other SCM activities, and the timing
of establishing and releasing baselines.

*
4.3 Change Control

Specify when changes must begin to be controlleda@ whq any increasein the formality of that
control will be implemented. For example, changes maybe allowed without formal review prior to
establishing some intermediate baseline of detailed&sign informatwn; changes maybe required to
be individually inspected during system test.

4.4 Status Reporting, Reviews, and Audits

I&ntifi when status information on the developing sojiware will be done. Identijj the points in the
l$e cycle when the audits andlor reviews identified in 3.4 are to be pe~ormed. As with 4.2 above,
&scribe any &pendencies with other activities. Reimbursable programs may have to provide
specijic information at regular or predejined intervals.

5. Resources

m The contents of this section was previously found in Section 4 and Section 2.4 of
the old Std 828-1983. The new Std 828-1990 has combined them into this section.

5.1 Tools Techniques, and Methodologies

Identifi any software tools, manual procedures, and methodologies that are SCM-specijic or are
general aids to the SCM activities identijled in this plan. These can include control of the SCM
Library structure, access control, tracking of documentation and code, baseline system generation,
change processing, problem tracking and control, status reporting, and archiving and retrieval
tools.

5.2 Personnel

I&ntify the personnel necessary to pe~orm SCM on this project, their jimction(s), and the activities
in which they will be involved. This is more of a count of the personnel (Full Time Equivalents or
FTEs) or naming of individuals with special skills). On small projects, this was probably addressed
in Section 2.2. On large projects, Section 22 may have only discussed responsibilities at the
organizatwnal level. When the number of people required is not clearly dejined in Section 2.2, it
should be identified here.

5.3 Training

Identify any training requirements necessary to implement SCM on this project. This may include
training in SCM techniques and tool-specific training.

F-9

6. Plan Maintenance

I&ntify the Owner of this plan and how ojlen it will be updated (or reviewed for possible update).
Specify how changes and suggestions to this plan are to be communicated, and how those changes
are to be evaluated and approved.

. ..

.

‘-’

F-1o

Distribution:

0326

f 0326

0336
*

0363

0364

1204

1424

2273

2314

2337

2545

2615

2615

2725

2818

3827

5012

5363

5711

5931

6418

6413

6422

6522

8117

9227

9232

9545

D. E. Peercy (5)

E. H. Tomlin (20)

G. E. Dahms

D.A. Clements

J. P. Martin

P. L. McAllister

J. L. Tomkins

M. A. Tebo

R. G. Husa

M. C. Kidd

S. L. Trauth (5)

D. D. Neidigk

P. A. Trellu

B. R. Ahrens (5)

O. H. Bray (5)

B. L. Straba (250)

B. P. Gaude (5)

R. A. Van Cleave

J. P. Franklin

G. F. Quinlan

R. M. Summers (5)

D. T. Chanin

T. J. Heams

G. C. Giesler

F. J. CUPPS

L. M. Grady

M. T. McComack

L. M. Desonier

,/---

8523-2 Livermore Library

3141 . S. A. Landenberger (5)

3913-2 L. G. Byrum

For DOE/OSTI (8)

3151 G. C. Claycomb

Second Printing, January 1996

MS 0638 M. K Blackledge (300), 12326

Disrnbution-l

